摘要
本文提出了一个能够描述具有复杂黏弹性的流体在各种条件下发生变形和流动的数学模型,并建立了相应的数值求解方法。数值方法是在计算流体动力学中常用的SMAC方法的基础上改进时间步进格式,依据问题的性质合理选用显式或隐式,从而达到提高计算效率的目的。数值模型被应用于Oldroyd-B黏弹性流体平板剪切流起动问题的计算,得到的数值解与理论解吻合良好。论文还对针对平板间平行流动进行数值实验,对算法的稳定性和收敛性进行了分析。
Based on the simplified marker-and-cell (SMAC) method for Newtonian fluid flows,a numerical method for flows of viscoelastic fluids expressed by an extraordinarily generalized constitutive equation has been developed and applied to the computation of the start-up of Couette flows. The numerical results agree well with the analytical solution. Application of the method to Poiseuille flows has also been carried out to investigate the stability and the speed of convergence of the numerical scheme. This paper presents the research analysis.
出处
《水动力学研究与进展(A辑)》
CSCD
北大核心
2008年第3期331-337,共7页
Chinese Journal of Hydrodynamics
基金
国家自然科学基金项目(10772099)
国家自然科学基金委员会创新研究群体基金项目(50221903)资助