期刊文献+

基于网页分类与加权的网民聚类方法研究

On the Method of Clustering Web Users Clustering Based on Web Page Classes and Weight
下载PDF
导出
摘要 提出一种基于网页分类和网页加权的网民聚类算法,其基本思想是:先以各个网民对每个网页的点击量为依据,通过模糊等价矩阵聚类法对网页进行分类,并根据网页内容与深度确定网页的加权,即给每个网页一个分数,最后根据这个加权分数再次对网民进行聚类,即使用两次模糊等价矩阵聚类. A clustering algorithm of net users based on web page classification and web page weight is proposed. The basic idea is as follows: firstly, web pages are classified by using the method of fuzzy equivalent matrix on the basis of hits amounts of each web page. Then, web page weight is set with its content and depth, that is, this method gives each web page a weighted score. At last, the net users are clustered according to this weighted scores, in fact, this method uses fuzzy equivalent matrix to cluster for two times.
出处 《北华大学学报(自然科学版)》 CAS 2008年第3期284-288,共5页 Journal of Beihua University(Natural Science)
基金 吉林省科技型中小企业创新基金(SC0601020)
关键词 网页分类 网页加权 模糊等价矩阵聚类 Web page classification Web page weight Fuzzy equivalent matrix cluster
  • 相关文献

参考文献6

二级参考文献65

  • 1刘泉凤,陆蓓,王小华.文本挖掘中聚类算法的比较研究[J].计算机时代,2005(6):7-8. 被引量:8
  • 2刘远超,王晓龙,徐志明,关毅.文档聚类综述[J].中文信息学报,2006,20(3):55-62. 被引量:65
  • 3陈彬,洪家荣,王亚东.最优特征子集选择问题[J].计算机学报,1997,20(2):133-138. 被引量:96
  • 4[7]何贵新.模糊知识处理的理论与技术(第2版).北京:国防工业出版社,1998:414-421 被引量:1
  • 5[3]Ganter B,Wille R.Formal concept analysis:mathematical foudations.Berlin:Springer Verlag,1999 被引量:1
  • 6[4]Wille R.Restructuring lattice theory:an approach based on hierarchies.(Ed:) Rival I.,Symposium on Ordered Sets,Boston:Reidel,Dordrecht,1982 被引量:1
  • 7[5]Formica A.Ontology-based concept similarity in formal concept analysis.Information Sciences,2006; 176 (18):2624-2641 被引量:1
  • 8[6]Missikoffm,Wang X F.A group decision system for collaborative ontology building.La Rochelle,France:Proceedings of International Conference on Group Decision and Negociation,2001:153-160 被引量:1
  • 9邱桃荣,熊筱芳,白小明.基于Rough集的近似最优决策树生成算法[J].微计算机信息,2007(01Z):296-297. 被引量:5
  • 10Ding J, Gravano L, Shivakumar N. Computing geographical scopes of Web resources. In: Amr A, et al., eds. Proceedings of the 26th International Conference on Very Large Data Bases. Cairo: Morgan Kaufmann Publishers, 2000. 545-556. 被引量:1

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部