期刊文献+

改进遗传神经网络及其在水体富营养化和藻类生长预测中的应用 被引量:5

Improved Genetic Neural Network and Its Application in Forecasting of Rich Nourishment of Water and Blue-Green Algae
下载PDF
导出
摘要 水体富营养化是藻类爆发性生长的主要因素,为了对其进行实时监测预报,提出一种改进遗传神经网络(QGANN),以实现智能预测.该网络从遗传算法(GA)和神经网络(NN)两方面及其相互关系着手,构造了一个基于量子力学原理的量子平衡交叉算子,设计了一种NN混合优化策略,将两者合并共生获得了一类快速、高效的神经网络预测模型.水库和湖泊蓝绿藻爆发预测实验表明:该改进遗传算法(QGA)性能优良;QGANN的泛化能力明显提高,比未经改进的方法(GAsNN)及简单改进的方法(DCGANN)取得了更加满意的效果. In order to inspect and forecast rich nourishment and growth of blue-green algae, an improved genetic neural network(QGANN) was proposed, in which a quantum balance crossover operator for genetic algorithm (QGA) is developed and a hybrid optimization method based on neural network(NN) is introduced. The experimental results of forecasting algae in lakes and reservoirs indicate that the proposed QGA has a good performance, the QGANN can enhance modeling speed and boost the generalization performance of NN, and has more satisfactorily effect than basic genetic neural network(GAsNN) and improved genetic neural network (DCGANN).
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2008年第2期262-265,共4页 Journal of Shanghai Jiaotong University
基金 国家高技术研究发展计划(863)项目(2003AA601040-02) 上海市科委国际合作处资助项目(052307055)
关键词 水体富营养化 遗传算法 神经网络 蓝绿藻 量子平衡交叉算子 rich nourishment of water genetic algorithm(GA) neural network(NN) blue-green algae quantum balance crossover operator
  • 相关文献

参考文献7

  • 1张伟,王恩禄,马天星,马健.预测循环流化床L阀颗粒质量流量的改进BP算法[J].上海交通大学学报,2006,40(8):1316-1319. 被引量:1
  • 2王小平 曹立明.遗传算法[M].西安:西安交通大学出版社,2000.. 被引量:9
  • 3Yao Z H,FeiMR,Li K,et al.Recognition of bluegreen algae in lakes using distributive genetic algorithm based neural networks[J].Neurocompution,2007,70(4-6):641-647. 被引量:1
  • 4Nikolaev N,Iba H.Learning polynomial feedforward neural networks by genetic programming and backpropagationm[J].IEEE Trans Neural Netw,2003,14 (2):337-350. 被引量:1
  • 5Leung F,Lain H,Ling S,et al.Tuning of the structure and parameters of a neural network using an improved genetic algorithm[J].IEEE Trans Neural Netw,2003,14(1):79-88. 被引量:1
  • 6Bevilaequa A.Optimizing parameters of a motion detection system by means of a genetic algorithm[C]// Proceedings of 11th International Conference in Central Europe on Computer Graphics Visualization and Computer Vision (WSCG2003).Czech Republic:WSCG,2003:25-32. 被引量:1
  • 7曾谨言著..量子力学导论 第2版[M].北京:北京大学出版社,1998:392.

二级参考文献5

共引文献8

同被引文献64

引证文献5

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部