期刊文献+

基于Contourlet域树状系数的自组织神经网络图像分割 被引量:2

Image segmentation of self-organizing neural networks based on tree-type coefficients in Contourlet domain
下载PDF
导出
摘要 为避免小波域隐马树模型分割算法中模型假设的不足,提出用SOM网络作为非参数概率密度函数估计器。用图像轮廓波变换域中的树状数据作为网络输入,以利用图像的几何特征来提高分割效果。由训练好的网络组可以得到待分割图像各个尺度下的条件概率密度函数值,应用最大似然分类准则得到相应尺度下的粗分割。通过多尺度粗分割结果的融合,得到像素级的分割结果。用合成纹理图像、航拍图像和SAR图像进行实验,并与小波域隐马树模型分割方法和基于SOM网络的多尺度贝叶斯分割方法进行比较。对合成纹理图像给出错分概率作为评价参数,实验结果表明所提算法分割效果更优。 To avoid improper model assumption in hidden Markov tree model segmentation method in wavelet domain, self-organizing feature map (SOM) neural networks are used as a nonparametric probability density function estimator. Tree type data in Contourlet domain of images are used as inputs of SOMs so as to utilize geometric features of images. Condition probability density function values at given scale for awaiting images to be segmentalized can be obtained by trained networks. The maximum likelihood classification criterion is used for raw segmentation of images. The segmentalized results at pixel level can be obtained by fusing the raw segmentation results. In experiments, syn thetic mosaic images, aerial images and SAR images are selected to evaluate the performance of the proposed method, and the segmentalized results are compared with the hidden Markov tree model method in wavelet domain and the multiscale Bayesian segmentation method based on SOMs. For synthetic mosaic texture images, the miss-classed probability is given as the evaluation parameter. The experiment results show the proposed method has better performance.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第5期843-846,共4页 Systems Engineering and Electronics
基金 国家自然科学基金(60472083) 国防预研项目(A1420060172)资助课题
关键词 轮廓波 自组织特征映射 图像分割 多尺度 Contourlet self-organizing feature map image segmentation multiresolution
  • 相关文献

参考文献7

  • 1Hyeokho Choi, Baraniuk Richard G. Multiscale image segmentation using wavelet domain hidden Markov models [J]. IEEE Trans. on image processing ,2001,10(9). 被引量:1
  • 2Tae Hyung Kim, Il Kyu Eom, Yoo Shin Kim. Texture segmentation using statistical characteristics of KOHONEN and multiscale Bayesian estimation[C].ICASSP 2006 1 - 4244 - 0469 - X,2006. 被引量:1
  • 3Guoliang Fan, Xiang Gen Xia. Improved hidden Markov models in the wavelet domain [J]. IEEE Trans. on signal processing, 2001,49(1). 被引量:1
  • 4Minh N Do. Contourlets and sparse image representations [J]. Proceedings of SPIE Applications in Signal and Image Processing, 2003, 5207(9) :560-570. 被引量:1
  • 5金炜,潘英俊,魏彪,冯鹏.一种基于Contourlet的无表零树图像编码算法[J].电子与信息学报,2006,28(11):2116-2120. 被引量:5
  • 6沙宇恒,丛琳,孙强,焦李成.基于Contourlet域HMT模型的多尺度图像分割[J].红外与毫米波学报,2005,24(6):472-476. 被引量:22
  • 7Duda Richard O Hart Peter E Stork David G. Pattern classifica tion (2nd Edition) [M]. A Wiley Interscience publication 2001, 24:161 - 192,576 - 582. 被引量:1

二级参考文献20

  • 1侯彪,刘芳,焦李成.基于小波变换的高分辨SAR港口目标自动分割[J].红外与毫米波学报,2002,21(5):385-389. 被引量:16
  • 2焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 3Candès E J. Monoscale ridgelets for the representation of images with edges [R]. Technical report, Stanford Univ., 1999. 被引量:1
  • 4Candès E J, Donoho D L. Curvelets [R]. Technical report, Stanford Univ., 1999. 被引量:1
  • 5Do M N, Vetterli M. Contourlets: a new directional multiresolution image representation [C]. Signals, Systems and Computers, Conference Record of the Thirty-Sixth Asilomar Conference, Rochester:2002,1:3-6. 被引量:1
  • 6Hyeokho Choi, Richard G Baraniuk. Multiscale image segmentation using wavelet-domain hidden Markov models [J]. IEEE Transactions on Image Processing, 2001,10(9):1309-1321. 被引量:1
  • 7FAN Guo-Liang, XIA Xiang-Gen. A joint multicontext and multiscale approach to Bayesian image segmentation [J]. IEEE Transactions on Geoscience and Remote Sensing, 2001,39(12):2680-2688. 被引量:1
  • 8SUN Qiang, GOU Shuiping, JIAO Licheng. A new approach to unsupervised image segmentation based on qavelet-domain hidden Markov tree models [C]. ICIAR2004, Portugal: Porto,2004:41-48. 被引量:1
  • 9Duncan D Y Po, Do M N. Directional multiscale modeling of images using the contourlet transform [J]. Statistical Signal Processing, 2003 IEEE Workshop on, 2003:262-265. 被引量:1
  • 10Bouman C A, Shapiro M. A multiscale random field model for Bayesian image segmentation [J]. IEEE Trans. Iimage Processing, 1994, 3(2):162-177. 被引量:1

共引文献25

同被引文献14

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部