期刊文献+

稀薄大气层内轻诱饵速度识别法 被引量:8

Light decoy velocity recognition method in thin atmosphere
下载PDF
导出
摘要 随着地基相控阵雷达测速精度的大幅度提高,针对稀薄大气对轻诱饵有明显的减速作用,提出了一种新的目标识别方法——稀薄大气层内轻诱饵速度识别法,并对其识别原理、识别判决准则进行了详细阐述和分析,该方法通过雷达高精度多普勒测速及轨迹估计信息,获取轻诱饵气动减速特性进行识别,避开了质阻比参数估计中动态收敛过程。最后通过典型算例的计算机仿真计算,验证了该方法的有效性。 A new target recognition method, the light decoy velocity recognition method in thin atmosphere, is proposed along with precision improvement of Doppler velocity measure of ground-based array radar. The recognition theory and recognition judgement rule in this method are described in detail and analyzed. The validity of this recognition method is testified by computer simulation with typical example.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2008年第5期835-838,共4页 Systems Engineering and Electronics
关键词 目标识别 速度识别法 稀薄大气 多普勒测速 弹道导弹 轻诱饵 target recognition velocity recognition method thin atmosphere Doppler velocity measure ballistic missile light decoy
  • 相关文献

参考文献8

  • 1Mehra R K, A comparison of several nonlinear filters for reentry vehicle tracking [ J ]. IEEE Trans. on Automatic Control, 16,1971. 被引量:1
  • 2Carditto G P, Mrstik A V, Ptambeck T. A track filter for reentry objects with uncertain drag[J]. IEEE Trans. on Aerospace and Electro,Tic Systems, 1999, 35 (2): 394-4081. 被引量:1
  • 3Jesionowski R, Zarchan P. Comparison of filtering options for ballistic coefficient estimation[R]. ADA3557401998. 被引量:1
  • 4杨华波,张士峰,蔡洪.再入飞行器弹道系数的自适应估计[J].现代防御技术,2003,31(5):18-22. 被引量:3
  • 5金文彬,刘永祥,黎湘,任双桥.再入目标质阻比估计算法研究[J].国防科技大学学报,2004,26(5):46-51. 被引量:17
  • 6U.S. Standard Atmosphere. NASA[R]. U.S. Air Force, Washinton , 1976. 被引量:1
  • 7Jutier S J, Uhtmann J K, Durrant-Whyte H F. A new approach for filtering Nonlinear systems[C].American Control Conifer ence, Proceedings, 1995,3(6):1628 - 1632. 被引量:1
  • 8Jutier S J, Uhtmann J K. Unscented filtering and nonlinear estimation[C].Proceedings of the IEEE, 2004 (3) : 401 - 422. 被引量:1

二级参考文献9

  • 1Catalarro S F, Schneider H. Detrmination of Weight-to-drag Ratio from Radar Measurements[R]. AD401488, 1963. 被引量:1
  • 2Mehra R K. A Comparison of Several Nonlinear Filters for Reentry Vehicle Tracking[J]. IEEE Trans. on Automatic Control, 1971, AC-16(4):307-319. 被引量:1
  • 3Jesionowski R, Zarchan P. Comparison of Filtering Options for Ballistic Coefficient Estimation[R]. ADA355740,1998. 被引量:1
  • 4Cardillo G P, Mrstik A V, Plambeck T. A Track Filter for Reentry Objects with Uncertain Drag[J]. IEEE Trans. on Aerospace and Electronic Systems, 1999,35(2):394-408. 被引量:1
  • 5Julier S, Uhlmann J K. A New Extension of the Kalman Filter to Nonlinear Systems[J]. SPIE, 1997, 3068:182-193. 被引量:1
  • 6Julier S, Uhlmann J K. A General Method for Approximating Nonlinear Transformations of Probability Distributions[J]. SPIE, 1996:1-27. 被引量:1
  • 7Julier S, Uhlmann J K, Durrant-Whyte H F. A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators[J]. IEEE Trans. on Automatic Control, 2000, 45(3):472-488. 被引量:1
  • 8汪雄良.基于参数化技术的目标跟踪方法[D].国防科技大学硕士学位论文,2001. 被引量:1
  • 9Rao A V.Minimum-variance estimation of reentry debris trajectories[J].Journal of Spacecraft and Rockets, 2000,37(3):366-373. 被引量:1

共引文献17

同被引文献106

引证文献8

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部