摘要
本文提出了基于俞茂宏统一强度理论的双剪统一相关和非相关流动的弹塑性本构模型,并给出了该统一弹塑性本构模型的有限元实施方法。重点讨论了所谓“奇异屈服面”奇异性的处理方法,定义了两类不同类型的奇异形式,给出了它们的不同处理方法。该方法既直观、简单又便于有限元的实施,它对于其它类型“奇异屈服面”角点奇异性的处理同样适用。应用基于该统一弹塑性本构模型的有限元程序UEPP(UnifiedElasto-PlasticfiniteelementProgram),验证了作者提出的双剪统一弹塑性本构模型及其实施方法的正确性。统一强度理论和双剪统一弹塑性本构模型可以广泛应用于各种土木、机械、航空和岩土工程的结构分析。
Twin shear unified elasto-plastic associated and non-associated constitutive model, which is based on the Twin Shear Unified Strength Theory Yu,1991, is proposed in this paper. The authors give a classification of singularities and discusses their solutions of the proposed unified elasto-plastic constitutive model, which are also applicable to singular yield surface such as Tresca, Mohr-Coulomb and others. This unified consitutive model has been implemented in UEPP (Unified Elasto-Plastic finite element Program). Twin Shear Unified Strength Theory (or Unified Strength Theory), unified elastoplastic constitutive model and UEPP constitute a comprehensive system of elasto-plastic theoretical analysis, finite element implementation and engineering application.
出处
《岩土工程学报》
EI
CAS
CSCD
北大核心
1997年第6期2-10,共9页
Chinese Journal of Geotechnical Engineering
基金
国家教育委员会重点科学技术项目
机械结构强度和振动国家重点实验室研究项目
关键词
弹塑性本构模型
流动法则
结构分析
岩土工程
elasto-plastic constitutive model, singularities, associated and non-associated flow theory, unified strength theory, unified elasto-plastic constitutive model, twin shear theory.