期刊文献+

一个新的多分类器组合模型 被引量:7

New model of combining multiple classifiers
下载PDF
导出
摘要 分类在数据挖掘中扮演着很重要的角色,然而单个分类器有很多缺点,包括适用范围十分有限和分类准确度不高等。把多个单分类器的分类结果融合起来是克服这些缺点的有效途径,因此存在很高的研究价值。组合多分类器的一个核心内容是融合规则,现存的融合规则有积规则、和规则、中值规则与投票规则等,但这些规则性能还不够稳定。提出了一个新的基于神经网络的融合规则,并依此建立一个新的多分类器组合模型,实验表明它能提高分类准确度和稳定性。 Classification is a very important part in the domain of data mining,however,single classifiers have many defects,such as very finite applicability and low accuracy.Combining multiple classifiers can overcome the defects.The existent combination rule,which is the pivotal conception during the process of combination,including product rule,sum rule,median rule,voting rule and so on,but these are not steady enough.In this paper,the authors develop a new model of combining multiple classifiers based on nerve net,and it is proved that it can improve not only the accuracy of classification but also its applicability.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第17期131-134,147,共5页 Computer Engineering and Applications
基金 湖南省自然科学基金(the Natural Science Foundation of Hunan Province of China under Grant No.06JJ20049, No.07JJ5085)
关键词 数据挖掘 分类 神经网络 组合多分类器 data mining classification nerve net combining multiple classifiers
  • 相关文献

参考文献10

  • 1Kittler J,Hater M,Duins R P W.On combining classifiers[J].lEEE Trans on Pattern Analysis & Machine Intelligence,1998,20(3): 226-239. 被引量:1
  • 2Madhvanath S,Govindaraju V.Serial classifier combination for handwritten word recognition|C]//Center of Excellence for Document Analysis and Recognition( CEDAR ).IEEE Press, 1995:911-914. 被引量:1
  • 3王刚,黄丽华,张成洪,夏洁.数据挖掘分类算法研究综述[J].科技导报,2006,24(12):73-76. 被引量:10
  • 4Zhou Qifeng,Lin Chengde,Yang Wei.Muhi-classifier combination for banks credit risk assessment[C]//Proc the 1st IEEE Conference Industrial Electronics and Applications (ICIEA),Singapore, 2006: 1-4. 被引量:1
  • 5Tulyakov S,Govindaraju V.Classifier combination types for blometric applications[C]//Proc of the 2006 Conference on Computer Vision and Pattern Recognition Workshop,2006:58-65. 被引量:1
  • 6王正群,孙兴华,杨静宇.多分类器组合研究[J].计算机工程与应用,2002,38(20):84-85. 被引量:6
  • 7杨利英,覃征,王卫红.多分类器融合系统设计与应用[J].计算机工程,2005,31(5):175-177. 被引量:6
  • 8Guo Gongde,Neagu D.Similarity-based classifier combination for decision making[C]//Proc of the IEEE International Conference on Systems, Man and Cybernetics ( SMC ).IEEE Press, 2005 : 176-181. 被引量:1
  • 9Zhang Jianpei,Cheng Lili,Ma Jun,A new multiple classifiers combination algorithm[C]//Proc of the First International Multi-Symposiums on Computer and Computational Sciences (IMSCCS).IEEE Press. 2006: 287-291. 被引量:1
  • 10Kuncheva L I,Bezdek J C,Sutton M A.On combining multiple classifiers by fuzzy templates[C]//Proc NAFIPS'98.Pensacola, 1998: 193-197. 被引量:1

二级参考文献30

  • 1韩宏.多分类器组合及其在手写体数字识别中的应用:博士学位论文[M].南京:南京理工大学,2000.. 被引量:1
  • 2Huang Y S, Suen C Y. A Method of Combining Multiple Experts for the Recognition of Unconstrained Handwritten Numerals[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995,17:90-94. 被引量:1
  • 3Sharkey A J C, Sharkey N E, Gereckc U, et at. The "Test and Select"Approach to Ensemble Combination[A]. Kittlcr J, Roli F(Eds.).Multiple Classifier Systems[C]. LNCS 1857, Springer-Vcrlag, 2000:30-44. 被引量:1
  • 4Suen C Y, Nadal C, Mai T A, et al. Recognition of Totally Unconstrained Handwriting Numerals Based on the Concept of Multiple Experts [A]. Suen C Y(Eds.).Frontiers in Handwriting Recognition[C].Montreal, Canada: International Workshop on Frontiers in Handwriting Recognition, 1990:131-143. 被引量:1
  • 5Latinne P, Debeir O, Decaestecker C. Combining Different Methods and Numbers of Weak Decision Trees[J]. Pattern Analysis & Applications, 2002,5:201-209. 被引量:1
  • 6Roli F, Giacinto G. Design of Multiple Classifier Systems. Bunke H,Kandel A(Eds.). Hybrid Methods in Pattern Recognition[M]. World Scientific Publishing, 2002:199-226. 被引量:1
  • 7Ho T K. Complexity of Classification Problems and Comparative Advantages of Combined Classifiers[A]. Kittler J, Roli F(Eds.).Multiple Classifier Systems[C]. LNCS 1857, Springer-Verlag, 2000:97-106. 被引量:1
  • 8Krogh A, Vedelsby J. Neural Network Ensembles, Cross Validation Active Learning[A]. Tesauro G, Touretzky D, Leen T(Eds.). Advances in Neural Information Processing Systems[C]. Cambridge, MA: MIT Press, 1995, 7:231-238. 被引量:1
  • 9Breiman L. Bagging Predictors[J]. Machine Leaming, 1996,24:123-140. 被引量:1
  • 10Freund Y, Schapire R. Experiments with a New Boosting Algorithm [A]. Proceeding of the Thirteeth International Conterence on Machine Learning[C], 1996:148-156. 被引量:1

共引文献19

同被引文献64

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部