摘要
We report the structural characterization and proposed formation mechanism of honeycomb-like ZnO conglomerations fabricated by direct precipitation method. X-ray diffraction (XRD), energy-disperse X-ray spectrometry (EDS), scanning electron microscopy (SEM) showed that the as-prepared ZnO calcined at 700 ℃ were micron sphere particles with honeycomb-like structure. In the UV-vis absorbing spectrum, it was observed that there is a new additional absorption band at 260 nm, and it was speculated that the absorption may be caused by defects on the surface and interface of honeycomb-like ZnO. The as-products showed high sensitivity and short response time to sulfured hydrogen gas. These results demonstrate that honeycomb-like ZnO conglomerations are very promising materials for fabricating H2S gas sensors.
We report the structural characterization and proposed formation mechanism of honeycomb-like ZnO conglomerations fabricated by direct precipitation method. X-ray diffraction (XRD), energy-disperse X-ray spectrometry (EDS), scanning electron microscopy (SEM) showed that the as-prepared ZnO calcined at 700 ℃ were micron sphere particles with honeycomb-like structure. In the UV-vis absorbing spectrum, it was observed that there is a new additional absorption band at 260 nm, and it was speculated that the absorption may be caused by defects on the surface and interface of honeycomb-like ZnO. The as-products showed high sensitivity and short response time to sulfured hydrogen gas. These results demonstrate that honeycomb-like ZnO conglomerations are very promising materials for fabricating H2S gas sensors.
基金
the National Natural Science Foundation of China(No.20771095)
He'nan Outstanding Youth Science Fund(No.0612002700)is gratefully acknowledged.