期刊文献+

动态数据系统的时间序列建模策略 被引量:2

A time series modeling strategy for dynamic data systems
下载PDF
导出
摘要 传统的基于相关性分析方法进行建模的局限性和"危险性"主要表现在:估计的样本自相关是非常坏的估计,经常会有大的方差,彼此之间是高度相关的,可能给出原来序列结构一个完全失真的图像,不能较准确和全面地反映系统特性。提出了基于动态数据系统的时间序列建模方法,将时间序列看作是随机系统对不相关的或相互独立的"白噪声"输入响应的一种实现方式。对平稳时间序列,以自回归滑动平均模型为基本模型,并以额值为1递增拟合,用F检验判断拟合的改善程度,最后用残差分析判断模型的适用性。对非平稳序列,需先分离出确定性趋势,对剩余平稳随机部分建模分析。用该方法对隧道位移监测数据建模分析,预测与实测吻合较好,表明该方法具有适用性好、精度高且便于编制程序实现等优点。 The limitations and "risks" existing in traditional modelling methods based on correlation analysis mainly lies in the following three areas: estimated sample autocorrelation is a poor estimator with regular large variance and high relationships with each other; they may produce a completely distorted image of the original series structure; and they are unable to reflect system characteristics accurately and roundly. A modelling method based on dynamic data systems in time series was presented. The time series was regarded as a realistic way to input response on a stochastic system to uncorrelated white noise. For stationary time series, an autoregressive moving average model was the basic model. The model took 1 as the increasing amplitude and fits model, used the F test to judge the degree to which the fit improved, and used residue analysis to weigh model applicability. For nonstationary time series, it needed to isolate deterministic trends first, and then model and analyze the surplus remaining stochastic portion. This method was used to model and analyze the displacement monitoring data of tunnels. The prediction accorded well with actual measurements. The results show that the method is quite applicable, highly precise, and can be easily implemented through programs.
出处 《重庆大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第5期558-562,共5页 Journal of Chongqing University
基金 国家自然科学基金资助项目(50374084)
关键词 时间序列 动态数据系统 建模策略 最小二乘估计 线性回归 time series dynamic data system modeling strategy least squares approximations linear regression
  • 相关文献

参考文献11

  • 1安鸿志著..时间序列的分析与应用[M].北京:科学出版社,1983:344.
  • 2博克斯,詹金斯.顾岚,范金城,译..时间序列分析:预测与控制[M]..北京:中国统计出版社,,1997.... 被引量:1
  • 3顾瑞龙 陶志范.动态数据系统及其应用.制造技术与机床,1980,(12):10-13. 被引量:1
  • 4杨位钦 张志方.动态数据系统(DDS)方法的应用和建模.机器人,1981,(3):16-24. 被引量:2
  • 5潘迪特,吴宪民.时间序列及系统分析与应用[M].北京:机械工业出版社,1988. 被引量:6
  • 6吕锐.时间序列分析中的模型定阶策略.国防科技大学学报,1988,10(4):97-106. 被引量:2
  • 7贺诗波,刘祥官,郜传厚,黄丽英,黄雅彬.高炉硅含量预测控制的时间序列混合建模[J].浙江大学学报(工学版),2007,41(10):1739-1742. 被引量:16
  • 8HE SHI-BO, LIU XIANG-GUAN, GAO CHUAN- HOU. Hybrid time series predictive control model for silicon content in blast furnace hot metal[J]. Journal of Zhejiang University, 1999,39(4) : 57-59. 被引量:1
  • 9田铮主编..动态数据处理的理论与方法 时间序列分析[M].西安:西北工业大学出版社,1995:180.
  • 10钟秋海.动态数据系统(DDS)建模方法的改进.北京工业学院学报,1986,(4):36-43. 被引量:2

二级参考文献11

共引文献66

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部