期刊文献+

考虑串扰因素的可逆电路的符号综合方法 被引量:4

Considering Crosstalk Symbolic Synthesis Method for Reversible Circuits
下载PDF
导出
摘要 目前存在的可逆电路综合方法大多只适用于输入输出相对较小的电路,而且忽略了路径延时的影响,无法应对集成电路日益复杂的趋势.为了使综合方法能够适用于大规模可逆电路,本文采用矩阵模型和符号代数作为理论基础,提出了一种符号综合方法,在考虑面积、延时、串扰等约束下利用成本函数来指导综合过程.实验结果表明利用这种启发式算法与现有的综合方法相比,在面积上所得结果近似,而总串扰得到了10.3%的改善,其路径延时要减少5%到20%之多,并且从CPU时间和存储开销上都显示出该算法的优势,有能力在有效的时间内实现大规模可逆电路的综合. Presently existing synthesis methods for reversible circuits were applicable only to reversible circuits with small numbers of inputs and outputs and bad neglected the impact of path delay, which could not meet the complex design. The heuristic Synthesis algorithm is presented in this paper. Based on matrix model and symbolic algebra, this paper offers a symbolic synthesis method and performs delay and crosstalk optimization simultaneously. Using the cost function the method steers the synthesis process, which considers multiple optimization objectives, including area, delay and crosstalk. The proposed algorithm was tested on a set of reversible benchmarks. Compared with existing synthesis methods, the algorithm reduces crosstalk by 10.3 % and path delay by 5 - 20 %. It has obvious advantages for CPU time and memory cost. The method can handle large scale reversible circuits in reasonable time.
出处 《电子学报》 EI CAS CSCD 北大核心 2008年第5期1029-1034,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.60273081)
关键词 逻辑综合 可逆电路 延时 串扰 logic synthesis reversible circuits delay crosstalk
  • 相关文献

参考文献12

  • 1D M Miller, D Maslov, G W Dueck. A transformation based algorithm for reversible logic synthesis [ A ]. Proceedings of the 40th conference on Design Automation [ C ]. Anaheim, CA, USA: IEEE Computer Society/ACM Press,2003.318- 323. 被引量:1
  • 2Z Zilic, K Radecka, A Kazamiphur. Reversible circuit technology mapping from non-reversible specifications[ A ]. Proceedings of the conference on Design, Automation and Test in Europe [ C]. Nice, France: IEEE Computer Society, 2007.558 - 563. 被引量:1
  • 3A D Vos, Y V Rentergem. Reversible computing: from mathematical group theory to electlonical circuit experiment[ A]. Proceedings of the 2^nd Conference on Computing Frontiers[ C ]. Iscilia, Italy: ACM Press, 2005.35 - 44. 被引量:1
  • 4D Maslov, G W Dueck, D M Miller. Toffoli network synthesis with templates[ J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2005,24 (6) : 807 - 817. 被引量:1
  • 5G W Dueck, D Maslov. Reversible function synthesis with minimum garbage outputs[A]. The 6th International Symposium on Representations and Methodology of Future Computing Technologies[ C ]. Trier, Germany, 2003. 154 - 161. 被引量:1
  • 6D Maslov, G W. Dueck. Garbage in reversible design of multiple output functions[ A ]. The 6th International Symposium on Representations and Methodology of Future Computing Technologies[ C]. Trier, Germany, 2003. 162 - 170. 被引量:1
  • 7P Kemtopf. A new heuristic algorithm for reversible logic synthesis[A] .Proceedings of the 41th conference on Design Automation[ C]. San Diego, California, USA: IEEE Computer Society/ACM Press, 2004. 834 - 837. 被引量:1
  • 8P Kemtopf, M. Perkowski. Function-driven linearly independent expansions of boolean functions and their application to synthesis of reversible circuits[A]. Proceedings of the 13^th International Workshop on Logic and Synthesis[C] ,Dana Point,Laguna Beach, California: ACM SIGDA ( special interest group design automation), 2003.28 - 30. 被引量:1
  • 9M H A. Khan, M A Perkowski, M. R. Khan. Ternary Galois field expansions for reversible logic and Kronecker decision diagrams for ternary GFSOP minimization ( Galois field sum of products)[ A ]. Proceedings of he 34th international symposium on Multiple-Valued Logic [ C]. Toronto, Canada: IEEE Com- puter Society,2004.58 - 67. 被引量:1
  • 10A Agrawal, N K Jha. Synthesis of reversible logic [ A ]. Proceedings of the conference on Design, Automation and Test in Europe[ C ]. Pads, France: IEEE Computer Society, 2004. 710 - 722. 被引量:1

二级参考文献9

  • 1闵应骅,李忠诚,赵著行.Boole过程论[J].中国科学(E辑),1996,26(6):541-548. 被引量:13
  • 2Chen W Y,Sandeep K G,Melvin A B.Analytical models for crosstalk excitation and propagation in VLSI circuits.IEEE Trans Comput-Aided Des Integr Circuits Syst,2002,21(10):1117 被引量:1
  • 3Saxena P,Liu C L.A postprocessing algorithm for crosstalk-driven wire perturbation.IEEE Trans Comput-Aided Des Integr Circuits Syst,2000,19(6):691 被引量:1
  • 4Gao T,Liu C L.Minimum crosstalk switchbox routing.Proc Int Conf CAD,San Jose,CA,1994:610 被引量:1
  • 5Liu Qinghua,Tang Pushan.Crosstalk estimation and optimization in deep sub-micron VLSI.Chinese Journal of Semiconductors,2002,23(5):535 被引量:1
  • 6Zhou Hai,Wong D F.An optimal algorithm for river routing with crosstalk constraints.Proc International Conference on Computer-Aided Design,1996:310 被引量:1
  • 7Kay R,Rutenbar R A.Wire packing:a strong formulation of crosstalk-aware chip-level track/layer assignment with an efficient integer programming solution.Proc International Symposium on Physical Design,San Diego,2000:61 被引量:1
  • 8Kim K W,Narayanan U,Kang S M.Domimo logic synthesis minimizing crosstalk.Proc the 37th ACM/IEEE DAC.Los Angeles,2000:280 被引量:1
  • 9张徐亮,赵梅,范明钰,李春辉,虞厥邦,黄劲.一种在VLSI电路物理设计中减小串扰的优化算法[J].计算机辅助设计与图形学学报,2001,13(4):289-293. 被引量:2

共引文献3

同被引文献45

  • 1孙加兴,叶青,周玉梅,叶甜春.互连线间容性串扰对延迟的影响[J].固体电子学研究与进展,2005,25(3):416-421. 被引量:6
  • 2孙加兴,郑赟,叶青,叶甜春.串扰延迟变化曲线的分析计算[J].计算机辅助设计与图形学学报,2005,17(10):2232-2238. 被引量:1
  • 3管致锦,秦小麟,葛自明.量子电路可逆逻辑综合的研究及进展[J].南京邮电大学学报(自然科学版),2007,27(2):24-27. 被引量:4
  • 4Dmitri Maslov,D.Michael Miller.Comparison of the cost metrics for reversible and quantum logic synthesis[J].IET Computers & Digital Techniques,2007,1(2):98-104. 被引量:1
  • 5Yang G,Song X W,Hung N.Perkowski.Group theory based synthesis of binary reversible circuits .Proc.3rd Annual Conference on Theory and Applications of Models of Computation .Anaheim California,USA:IEEE/ACM,2006.365-374. 被引量:1
  • 6M Nielsen,I Chuang.Quantum Computation and Quantum Information[M].Cambridge,UK:Cambridge University Press,2000.56-84. 被引量:1
  • 7R C Merkle.Two types of mechanical reversible logic[J].Nanotechnology,1993,4(4):114-131. 被引量:1
  • 8P Gupta,A Agrawal,K Jhan.An algorithm for synthesis of reversible logic circuits[J].IEEE Trans CAD ICS,2006,25(11):2317-2330. 被引量:1
  • 9H Thapliyal,M B Srinivas.The New BCD subtractor and its reversible logic implementation[J].Lecture Notes in Computer Science,2006,4186:466-472. 被引量:1
  • 10A Mishchenko,M Perkowski.Logic synthesis of reversible wave cascades .International Workshop on Logic and Synthesis .New Orleans,LA:IEEE/ACM,2002.197-202. 被引量:1

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部