期刊文献+

联合频域盲语音分离排序算法 被引量:2

Joint algorithm for permutation problem in frequency-domain blind speech source separation
下载PDF
导出
摘要 提出了一种新的频域盲分离排序算法。算法对不同频率点采用不同的排序算法:频率较低部分采用比较分离信号相邻频率点和谐波频率点之间幅度相关性相结合的排序算法;中频部分采用基于语音信号方位估计的排序算法;频率较高部分采用相关比较和方位估计结合的排序方法。仿真结果表明,该排序算法的鲁棒性和精确性较现有的单纯利用分离信号相关性的排序算法或者基于语音信号定位的排序算法有了一定的增强。 A new method for solving the permutationproblem in the frequency-domain Blind Source Separation (BSS) was presented. This new method divided the whole frequency-domain into three sections and applied different permutation algorithms to different sections. The neighboring frequency correlation and harmonic frequency correlation coefficient of signal amplitudes were used together for the low-frequency section, the direction of arrival estimation for speech sources for the mid- frequency section, and the combination of correlation coefficient comparison and direction estimation for the high-frequency sectibn, respectively. Experimental results show that the new method provides a more robust and precise solution to the permutation problem than the algorithm only with interfrequency correlation coefficient of signal amplitudes or only with direction of arrival estimation for sources.
出处 《计算机应用》 CSCD 北大核心 2008年第6期1552-1554,1562,共4页 journal of Computer Applications
基金 温州市科学技局资助项目(G20060102)
关键词 盲源分离 排序模糊性 方位估计 blind source separation permutation ambiguity direction of arrival estimation
  • 相关文献

参考文献9

  • 1MATSUOKA K. Minimal distortion principle for blind source separation [ C]// Proceedings of the 41st SICE Annual Conference (SICE 2002). Washington: IEEE Press, 2002,4:2138-2143. 被引量:1
  • 2IKRAM M Z, MORGAN D R. Exploring permutation inconsistency in blind separation of speech signals in a reverberant environment [C]// Proceedings of IEEE International Conference on Acoustics,Speech, Signal Processing (ICASSP). Washington: IEEE Computer Society, 2000 : 1041-1044. 被引量:1
  • 3KRAM M Z, MORGAN D R. Permutation inconsistency in blind speech separation: Investigation and solutions[ J]. IEEE Transactions on Speech and Audio Processing, 2005, 13(1) : 1 - 13. 被引量:1
  • 4KURITA S, SARUWATARI H , KAJITA S, et al. Evaluation of blind signal separation method using directivity pattern under reverberant conditions [ C]// Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing ( ICASSP). Washington: IEEE Computer Society, 2000:3140 -3143. 被引量:1
  • 5MITIANOUDIS N, DAVIES M. Permutation alignment for frequency domain ICA using subspace beamforming methods [C]// Proceedings of the 5th International Conference on Independent Component Analysis and Blind Signal Separation (ICA'04), LNCS 3195. Berlin: Springer-Verlag, 2004:669-676. 被引量:1
  • 6MURATA N, IKEDA S, ZIEHE A. An approach to blind source separation based on temporal structure of speech signals [ J]. Neurocomputing, 2001, 41(4) : 1 -24. 被引量:1
  • 7WANG WEN-WU, CHAMBERS J A, SANEI S. A novel hybrid approach to the permutation problem of frequency domain blind source separation [ C]//Proceedings of the 5th International Conference on Independent Component Analysis and Blind Signal Separation (ICA'04), LNCS 3195. Berlin: Springer-Verlag, 2004: 532- 539. 被引量:1
  • 8BINGHAM E. HYVARINEN A. A fast fixed-point algorithm for independent component analysis of complex valued signals [J]. international Journal of Neural Systems, 2000, 10(1) : 1 -8. 被引量:1
  • 9CAMPBELL D R. The ROOMSIM user guide (V3.3) [ EB/OL]. [2007-10-03]. http://media. paisley. ac. uk/_campbell/Roomsim/. 被引量:1

同被引文献20

  • 1Tiemin Mei, Fulian Yin, Jun Wang. Blind Source Separation Based on Cumulants With Time and Frequency Non- Properties [ J] , IEEE Trans. Audio, Specch and Languiage Processing, 2009 ,Vol. 17, No. 6, 1099-1108. 被引量:1
  • 2A. Hyvarinen, J. Karhunen, E. Oja, Independent Component Analysis [ M ]. New York: John Wiley and Sons, 2001. 被引量:1
  • 3Intae Lee, Taesu Kim, Te-won Lee, Fast fixed-point independent vector analysis algorithms for convolutive blind source separation[ J], 2007, Signal Processing 87, 1859- 1871. 被引量:1
  • 4Matsuoka K. , Nakashima S. Minimal distortion principle for blind source separation [ C ]. Proceeding of the 41st SICE Annual (SICE 2002), Washington, 2002,4, 2138- 2143. 被引量:1
  • 5Atsuo Hiroe, Solution of Permutation Problem in Frequency Domain ICA, Using Multivariate Probability Density Functions[C], ICASSP 2006. Toulouse, France, LNCS3889, 601- 608. 被引量:1
  • 6Alireza Masnadi-Shirazi, Bhaskar Rao, Independent Vector Analysis Incorporating Active and Inactive States [ C ], IC- ASSP 2009, Taipei, LNCS5441, 1837-1840. 被引量:1
  • 7Araki S. , Mukai R. , Makino S. Nishikawa, et al. , The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech [ J ], IEEE Trans. Speech and Audio Processing ,2003, Vol. 11,109-116. 被引量:1
  • 8Atsuo Hiroe, Blind Vector Deconvo/ution: Convolutive Mixture Models in Short-Time Fourier Transform Domain[ C ] , ICASSP 2007, Honolulu, U. S. A. , LNCS 4666, 471- 479. 被引量:1
  • 9Greenberg, S. , Kingsbury, The Modulation Spectrogram: in Pursuit of An Invariant Representation of Speech [ C ], ICASSP97, Munich, Germany, Vol. 3, 1647-1650. 被引量:1
  • 10Taesu Kim, Hagai T. Attias, Soo-Young Lee, Te-won Lee, Blind Source Separation Exploiting Higher-Order Frequen- cy Dependencies [ J ] , IEEE Trans. Audio, Speech and Language Processing, 2007, Vol. 15, 70-79. 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部