期刊文献+

适用于区间数据的基于相互距离的相似性传播聚类 被引量:8

Affinity propagation clustering for symbolic interval data based on mutual distances
下载PDF
导出
摘要 符号聚类是对传统聚类的重要扩展,而区间数据是一类常见的符号数据。传统聚类中使用的对称性度量不一定适用于度量区间数据,且算法初始化也一直是干扰聚类的严重问题。因此,提出了一种适用于区间数据的度量——相互距离,并在此度量的基础上采用了一种全新的聚类方法——相似性传播聚类,解决了初始化干扰问题,从而得出了适用于区间数据的基于相互距离的相似性传播聚类。通过理论阐述和实验比较,说明了该算法比基于欧氏聚类的K-均值算法要好。 Clustering for symbolic data is an important extension of conventional clustering, and interval representation for symbolic data is often used. The symmetrical measures in conventional clustering algorithms are sometimes not fit to interval data and the initialization is another severe problem that can affect the clustering algorithms. One metric called mutual distances for interval data was proposed; based on the metric, a new clustering method named affinity propagation clustering that could solve the problem initialization was used. Then, affinity propagation clustering for symbolic interval data based on mutual distance was given. Theoretical explanation and experiments indicate that the proposed algorithm outperforms K-means based on Euclidean distances for the interval symbolic data.
出处 《计算机应用》 CSCD 北大核心 2008年第6期1441-1443,1493,共4页 journal of Computer Applications
基金 国家863计划项目(2007AA1Z1582006AA10Z313) 国家自然科学基金资助项目(60773206/F02010660704047/F030304) 2004年教育部跨世纪优秀人才支持计划基金项目(NCET-04-0496) 2005年教育部科学研究重点基金项目(105087) 中国科学院自动化所模式识别国家重点实验室开放课题
关键词 符号聚类 区间数据 相互距离 相似性传播 K-均值 clustering of symbol interval data mutual distance affinity propagation K-means
  • 相关文献

参考文献11

  • 1RUI XU, WUNSCH D II. Survey of clustering algorithms [J]. IEEE Transactions on Neural Networks, 2005, 16(3) : 645 - 678. 被引量:1
  • 2de CARVALHO F A T. A fuzzy clustering algorithm for symbolic interval data based on a single adaptive Euclidean distance [ C]// ICONIP 2006, Part Ⅲ, LNCS 4234. Berlin: Springer-Verlag, 2006:1012 - 1021. 被引量:1
  • 3GOWDA K C, DIDAY E. Symbolic clustering using a new dissimilarity measure [ J]. Pattern Recognition, 1991, 24(6) : 567 - 578. 被引量:1
  • 4GOWDA K C, DIDAY E. Symbolic clustering using a new similarity measure [ J]. IEEE Transactions on Systems, Man and Cybernetics, 1992, 22(2): 368-378. 被引量:1
  • 5ICHINO M , YAGUCHI H . Generalized Minkowski metrics for mixed feature type data analysis [ J]. IEEE Transactions on Systems, Man and Cybernetics, 1994, 24(4): 698-708. 被引量:1
  • 6de CARVALHO F A T, de SOUZA R M C R, CHAVENT M, et al. Adaptive Hausdofff distances and dynamic clustering of symbolic interval data [J]. Pattern Recognition Letters, 2006, 27(3): 167 - 179. 被引量:1
  • 7FREY B J, DUECK D. Clustering by passing messages between data points [J]. Science, 2007, 315(5814): 972 -976. 被引量:1
  • 8洪志令 ,姜青山 ,董槐林 ,Wang Sheng-Rui .模糊聚类中判别聚类有效性的新指标[J].计算机科学,2004,31(10):121-125. 被引量:15
  • 9HUBERT L, ARABIE P. Comparing partitions [J]. Classification, 1985, 2(1): 193-218. 被引量:1
  • 10EL-SONBARY Y, ISMAIL M A. Fuzzy clustering for symbolic data [J]. IEEE Transactions on Fuzzy System, 1998, 6(2) : 195 -204. 被引量:1

二级参考文献11

  • 1Gonzalez T. Clustering to Minimize and Maximum Intercluster Distance. Theoretical Computer Science, 1985,38: 293 - 306 被引量:1
  • 2Pal N R,Bezdek J C. On Cluster Validity for the Fuzzy C-Mean Model. IEEE Transactions on Fuzzy Systems [J], 1995. 370-390 被引量:1
  • 3Xie X, Beni G. A Validity Measure for Fuzzy Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) ,1991, 13(8) :841-847 被引量:1
  • 4Bensaid A M. Validity-Guided (Re) Clustering with Applications to Image Segmentation. IEEE Transactions on Fuzzy Systems,1996,4(2) 被引量:1
  • 5Kwon S H. Cluster validity index for fuzzy clustering. ELECTRONICS LETTERS, 1998,34(22) :2176-2177 被引量:1
  • 6Zahid N,Limouri M,Essaid A. A New cluster-validity for fuzzy clustering. Pattern Recognition Letters, 1999,32:1089- 1097 被引量:1
  • 7Sun H,Wang S,Jiang Q. A New Validation Index for Determining the Number of Clusters in a Data Set. IJCNN'01, Washington DC, July 2001.14-19 被引量:1
  • 8Sun H, Wang S,Jiang Q. FCM-Based Model Selection Algorithms for Determining the Number of Cluster. By Pattern Recognition,2003 被引量:1
  • 9Bezdek J C. Chapter F6: Pattern Recognition in Handbook of Fuzzy computation. IOP Publishing Ltd, 1998 被引量:1
  • 10Anderson E. The Iris of the Gaspé Peninsula. Bulletin of American Iris Society, 1935,59:2-5 被引量:1

共引文献14

同被引文献85

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部