期刊文献+

带势的非线性Schrdinger方程的爆破性质 被引量:1

The Blow-up Property of Nonlinear Schrdinger Equations with Potential
下载PDF
导出
摘要 讨论了带势的非线性Schrd inger方程iφt=-Δφ+V(x)φ-|φ|p-1φ,其中t≥0,x∈RN.运用能量方法,得到了一个较为简单的判别条件,当初值满足该条件时,Cauchy问题的解在有限时间爆破. A class of nonlinear Schrōdinger equations with potential of the form iφl=-△φ+V(x)φ-|φ|^p-1φ,is discussed, where t ≥0 ,x ∈R^N. By using energy method, a relatively simple criterion is obtained. When the condition in the criterion is satisfied, the solution of the equation above will blow up in finite time.
作者 汪裕才
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第3期278-280,共3页 Journal of Sichuan Normal University(Natural Science)
基金 四川省杰出青年基金(07ZQ026-021)资助项目
关键词 非线性Schrōdinger方程 爆破 Nonlinear Schrōdinger equation Potential Blow up
  • 相关文献

参考文献16

  • 1Bradley C C, Sackett C A, Hulet R G. Bose-Einstein condensation of lithium:observation of limited condensate number[ J ]. Phys Rev Lett, 1997,78 : 985-989. 被引量:1
  • 2Chiao R Y, Garmine E, Townes C H. Self-trapping of optical beam[J]. Phys Rev Lett,1964,13:479-482. 被引量:1
  • 3Zakharov V E. Collapse of Langmuir waves[J]. Sov Phys JETP ,1972 ,35 :909-912. 被引量:1
  • 4Ginibre J, Velo G. On a class of nonlinear Schro6dinger equations[J]. J Funct Anal,1979,32:1-71. 被引量:1
  • 5Glassey R T. On the blowing up of solutions to the Cauchy problem for nonlinear Schrodinger equations [ J]. J Math Phys, 1977, 18(9) :1794-1797. 被引量:1
  • 6Weinstein M I. Nonlinear Schrodinger equation and sharp interpolation estimates[J]. Commun Math Phys, 1983,87:567-576. 被引量:1
  • 7Zhang J. Sharp conditions of global existence for nonlinear Schrosdinger and Klein-Gordon equations[J]. Nonlinear Anal T M A, 2002,48 : 191-207. 被引量:1
  • 8Oh Y G. Cauchy problem and Ehrenfest' s law of nonlinear Schrodinger equations with potential[J]. Commun Math Phys,1989, 121 : 11-33. 被引量:1
  • 9Cazenave T. Semilinear Schrodinger Equations [ A]//Courant Lecture Notes in Mathmatics. New York: American Mathematical Society, 2003. 被引量:1
  • 10Carles R. Nonlinear Schrodinger equations with replusive harmonic potential and applications[ J]. SIAM J Math Anal,2003,35: 823 -843. 被引量:1

二级参考文献51

  • 1Carles, R., Remark on nonlinear Schroedinger equations with harmonic potential [J],Ann. Henri Poincard, 3(2002), 757- 772. 被引量:1
  • 2Tsurumi, T., & Wadati, M., Collapses of wave functions in multi-dimensional nonlinear Schroedinger equations under harmonic potential [J], J. Phys. Soc. Jpn., 66(1997), 1 8. 被引量:1
  • 3Weinstein, M. I., Nonlinear Schroedinger equations and sharp interpolation estimates[J], Comm. Math. Phys [J], 87(1983), 567- 576. 被引量:1
  • 4Kwong, M. K., Uniqueness of positive solutions of △u - u + u^p = 0 in RN [J], Arch.Rational. Mech. Anal., 105(1989), 243-266. 被引量:1
  • 5Merle, F. & Tsutsumi, Y., L^2-concentration of blow-up solutions for the nonlinear Schroedinger equation with critical power nonlinearity [J], J. Diff. Eqs., 84(1990), 205-214. 被引量:1
  • 6Oh, Y. G., Cauchy problem and Ehrenfest's law of nonlinear Schroedinger equations with potentials [J], J. Diff. Eqs., 81(1989), 255- 274. 被引量:1
  • 7Cazenave, T., An Introduction to Nonlinear Schroedinger Equations [M], Textos de metodos mathmatics, 22 Rio de Janeiro, 1989. 被引量:1
  • 8Zhang, J., Stability of attractive Bose-Einstein condensate [J], J. Statist. Phys 101(2000), 731 -746. 被引量:1
  • 9Strauss, W. A., Existence of solitary waves in higher dimensions [J], Comm. Math.Phys., 55(1977), 149-162. 被引量:1
  • 10Kavian, T., A remark on the blowing-up of solutions to the Cauchy problem for nonlinear SchrSdinger equations [J], Trans. Am. Math. Soc., 299(1987), 193-203. 被引量:1

共引文献32

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部