期刊文献+

基于KPCA的HVAC系统传感器故障诊断 被引量:5

Fault detection and diagnosis for sensor in HVAC system based on KPCA
下载PDF
导出
摘要 传感器状态的好坏很大程度上影响暖通空调(HVAC)系统的运行,对其展开故障诊断十分必要。核主成分分析(KPCA)方法通过集成算子与非线性核函数计算高维特性空间的主元成分,有效捕捉过程变量中的非线性关系,将其用于传感器常见4种故障的诊断,先用Q统计量进行故障监测,再用T2贡献量百分比变化来识别故障。实验结果表明:KPCA方法具有很好的故障监测与诊断能力。 Fault detection and diagnosis for sensor is necessary, which affects the performance of the HVAC system seriously. The kernel principal component analysis (KPCA) effectively captures the nonlinear relationship of the process variables, which computes principal-component in high-dimensional feature space by means of integral operators and nonlinear kernel functions. The KPCA method is used in diagnosing for four familiar sensor faults. At first its fault is detected by Q statistic, at second its fault is identified by T^2 contribution percent change. The experiment result shows the KPCA method has good performance in fault detection and diagnosis.
出处 《传感器与微系统》 CSCD 北大核心 2008年第5期37-39,42,共4页 Transducer and Microsystem Technologies
关键词 核主成分分析 暖通空调 传感器 故障监测诊断 kernel principal component analysis(KPCA) HVAC sensor fault detection and diagnosis
  • 相关文献

参考文献6

二级参考文献33

  • 1MILETIC I, QUINN S, DUDZIC M, et al. An industrial perspective on implementing online applications of multivariate statistics[J]. Journal of Process Control, 2004, 14(8): 821-836. 被引量:1
  • 2DONG D, MCAVOY T J. Nonlinear principal component analysis based on principal curves and neural networks [ J ]. Computers and Chemical Engineering, 1996, 20(1): 65-78. 被引量:1
  • 3SCHOLKOPF B, SMOLA A, MULLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319. 被引量:1
  • 4LEE J M, YOO C K, CHOI S W, et al. Nonlinear process monitoring using kernel principal component analysis [J].Chemical Engineering Science, 2004, 59( 1 ): 223-234. 被引量:1
  • 5LEE J M, YOO C K, LEE I B. Fault detection of batch processes using multiway kernel principal component analysis[J].Computers and Chemical Engineering, 2004, 28 ( 9 ): 1837-1840. 被引量:1
  • 6Wang Shengwei, Wang Jin-Bo. Law-based sensor fault diagnosis and validation for building air-conditioning systems. HVAC and R Research,1999,5(4):353-380 被引量:1
  • 7Jackson J Edward, Mudholkar Govind S. Control procedures for residual associated with principal component analysis. Technometrics,1979,21(3):341-349 被引量:1
  • 8Dunia Ricardo, Qin S Joe, Edger Thomas F, et al. Identification of faulty sensors using principal component analysis. AICHE J, 1996,42(10):2797-2812 被引量:1
  • 9Qin S Joe, Dunia Ricardo. Determining the number of principal components for best reconstruction. Proc IFAC Dynamic and Control of Process Systems,1998:357-362 被引量:1
  • 10Cheon Ahn Byung, Mitchell John W, Mclntosh Ian B D. Model-based fault detection and diagnosis for cooling towers. In: ASHRAE Trans. 2001,107(I).839-846 被引量:1

共引文献56

同被引文献45

引证文献5

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部