期刊文献+

一种改进的支持向量数据描述算法 被引量:2

An Improved Support Vector Data Description Algorithm
下载PDF
导出
摘要 数据描述只使用目标集训练样本获得关于目标集的描述,支持向量数据描述(SVDD)是一种有效的单值分类数据描述算法.根据分类边界线上的支持向量之间距离的大小,利用距离的相似度来对训练集进行约减.实验结果表明,该算法与传统SVDD相比减少了训练时所需的支持向量数目,因而减少了测试时间,同时分类性能也稍有提高. By employing training samples of target set only, data description is obtained by description of target set, and SVDD (Support Vector Data Description) is proved an efficient data description algorithm of one-class classification. According to the distance between support vectors located on the classification boundary, this paper uses distance similarity to reduce the training samples. Experiments show that, compared with the traditional SVDD, this algorithm reduces the number of support vectors needed for exercise and thereby reduces the testing time; the classification performance of this algorithm is also increased in some degree.
出处 《五邑大学学报(自然科学版)》 CAS 2008年第2期52-56,共5页 Journal of Wuyi University(Natural Science Edition)
关键词 支持向量数据描述 单值分类 距离相似度 support vector data description (SVDD) one-class classification distance similarity
  • 相关文献

参考文献7

  • 1TAX D M J, DUIN R P W. Data description in subspaces[C]//International Conference on Pattern Recognition, Barcelona:[s.n.], 2000: 672-675. 被引量:1
  • 2TAX D M J, DUIN R P W. Data domain description using support vectors[C]//Proceedings of the European Symposium on Artificial Neural Networks. Bruges: [s.n.], 1999: 251-256. 被引量:1
  • 3TAX D M J, DUIN R P W. Outliers and data descriptions[C]//Seventh Annual Conference of the Advanced School for Computing and Imaging. Delft:[s.n.], 2001: 234-241. 被引量:1
  • 4李凌均,张周锁,何正嘉.基于支持向量数据描述的机械故障诊断研究[J].西安交通大学学报,2003,37(9):910-913. 被引量:55
  • 5LIN K M, LIN C J. A study on reduced support vector machine[J]. IEEE Trans on Neural Networks, 2003, 14 (6): 1449-1459. 被引量:1
  • 6ZHAN Y Q, SHEN D G. Design efficient support vector machine for fast classification[J]. Pattern Recognition, 2005, 38: 157-161. 被引量:1
  • 7赵英刚,陈奇,何钦铭.基于支持向量域数据描述的快速学习算法[J].仪器仪表学报,2006,27(z1):798-800. 被引量:3

二级参考文献13

  • 1袁曾任.人工神经元网络及其应用[M].北京:清华大学出版社,2000.. 被引量:16
  • 2[1]Tax D,Duin R.Support vector domain description[J].Pattern Recognition Letters,1999,20 (11-13):1191-1199. 被引量:1
  • 3[2]Tax D,Duin R.Data domain description using support vectors[A].In:Proceedings of the European Symposium on Artificial Neural Networks,1999,251-256. 被引量:1
  • 4[3]Vapnik,V N.Statistical Learning Theory[M].New York:Wiley,1998. 被引量:1
  • 5[4]Vapnik,V N.,The Nature of Statistical Learning Theory[M].New York:Springer-Verlag,2000. 被引量:1
  • 6[5]Kuan-Ming Lin,Chin-Jen Lin:A study reduced support vector machine[M].Neural Networks,2003,14(6):1449-1459. 被引量:1
  • 7[6]Zhan Y Q,Shen D G.Design efficient support vector machine for fast classification[J].Pattern Recognition,2005,(38):157-161. 被引量:1
  • 8Tax D M J, Duin R P W. Support vector domain description [J]. Pattern Recognition Letters, 1999, 20(11-13): 1 191~1 199. 被引量:1
  • 9Xin Dong, Wu Zhaohui, Zhang Wanfeng. Support vector domain description for speaker recognition [A].2001 IEEE Signal Processing Society Workshop.Falmouth, 2001. 被引量:1
  • 10Tax D M J, Duin R P W. Outliers and data descriptions [A]. Seventh Annual Conference of the Advanced School for Computing and Imaging. Delft,2001. 被引量:1

共引文献56

同被引文献21

  • 1李凤保,李凌.无线传感器网络技术综述[J].仪器仪表学报,2005,26(z2):559-561. 被引量:69
  • 2李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支持向量机的学习策略[J].计算机学报,2004,27(5):715-719. 被引量:53
  • 3罗瑜,易文德,何大可,林宇.大规模训练集的快速缩减[J].西南交通大学学报,2007,42(4):468-472. 被引量:5
  • 4SHARMA A, GOLUBCHIK L, GOVINDAN R. On the prevalence of sensor faults in real-world deployments [ C ]. In IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. San Diego, CA, USA, 2007:213-222. 被引量:1
  • 5NI K, RAMANATHAN N. Sensor network data fault types [ J ]. ACM Transactions on Sensor Networks, 2009,5(3) :1-29. 被引量:1
  • 6TAX D, DUIN R. Support vector data descriptions [ J ]. Machine Learning, 2004,54( 1 ) :45- 66. 被引量:1
  • 7PLATF J. Fast training of support vector machines using sequential minimal optimization [ A ]. In : Scholkopf B, Burges C, Smola A. Advances in kernel methods: support vector learning [ M ]. Cambridge, MA : MIT Press, 1999 : 185-208. 被引量:1
  • 8KEERTHI S, SHEVADE S, BHATFCHARYYA C, et al. Improvements to Platt' s SMO algorithm for SVM classifier design [ J ]. Neural Computation, 2001, 13 ( 3 ) :637-649. 被引量:1
  • 9JOACHIMS T. Making large-scale support vector machine learning practical [ A ]. In : Scholkopf B, Burges C, Smola A. Advances in Kernel Methods-Support Vector Learning[M]. Cambridge, MA: MIT Press, 1999: 169-184. 被引量:1
  • 10FAN R E, CHEN P H, LIN C J. Working set selection using second order information for training support vector machines [ J ]. Machine Learning Research, 2005,6: 1889-1918. 被引量:1

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部