摘要
针对由气动人工肌肉、高速开关阀和PLC控制器等组成的气动系统,分析了气动人工肌肉系统动态收缩量的数学模型,描述了收缩量随着工作频率和气压的变化关系,将收缩量理论模型与实验值的误差控制在4%以内,为气动人工肌肉的定位控制提供了理论基础.考虑到气动人工肌肉在动态过程中存在内部橡胶材料阻尼和空气流体阻尼,在现有的驱动力数学模型上添加了阻尼力项,建立了阻尼力与工作气压、工作频率和人工肌肉结构参数的数学模型,将气动人工肌肉动态驱动力的误差从16%下降到2.7%.通过理论仿真和实验验证,证明了所建立的动态收缩量数学模型和所改进的动态驱动力数学模型的正确性.
Aiming at the pneumatic muscle actuator(PMA) system mainly made up of pneumatic muscle actuator, programmable logic controller and high speed switch valve, a mathematic model is established to describe the dynamic constringency length of PMA governed by frequency and pressure. The error of theoretically predicted length is below 4% of the mean value. Considering the rubber damp and fluid damp of PMA, a new model is proposed based on the existing model for more accurately prediction of the dynamic actuating characteristics of the PMA system. A comparison between the simulation and experiment indicates the correctness of the dynamic constringency length model and the modified actuating characteristics model.
出处
《西安交通大学学报》
EI
CAS
CSCD
北大核心
2008年第5期588-591,共4页
Journal of Xi'an Jiaotong University
关键词
气动人工肌肉
动态收缩量
驱动特性
理论模型
pneumatic muscle actuator
dynamic constringency length
actuating characteristic
theory model