摘要
随着线性物理的飞速发展,反映改变自然现象的非线性现象引起人们极大的关注,分离变量法对于求解非线性偏微分方程的初值问题是一种简单而重要的方法.分离变量解对于描述非线性现象的特征起了重要作用.本文将求非线性波方程utt=(A(x)D(u)ux)x+B(x)Q(u),Ax≠0分离变量解.运用群状结构法求非线性波方程的分离变量解.给出非线性波方程的分离变量解.此方法是对方程utt=(D(u)ux)x+B(x)Q(u)的推广.
It is well known that the method of separation of variables is an efficient way to solve nonlinear partial differential equation(PDE) with certain/initial boundary value conditions.Functional separable solutions play an important role in the study of the separation of variables.The paper,we considered the separable variable solutions to the nonlinear wave equation utt=(A(x)D(u)ux)x+B(x)Q(u),Ax≠0.Using the group foliation method to solve the nonlinear wave equation.Some special exact solutions associated to the equation are obtained.It is an extension to the equation utt=(D(u)ux)x+B(x)Q(u).
出处
《厦门大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第1期12-15,共4页
Journal of Xiamen University:Natural Science
基金
国家自然科学基金(10671156)资助
关键词
分离变量解
群状结构法
非线性波方程
functional separable solutions
group foliation method
nonlinear wave equation