期刊文献+

线性张力腿模型与非线性模型的比较研究 被引量:3

COMPARATIVE INVESTIGATION OF LINEAR AND NONLINEAR TENDON MODELS
下载PDF
导出
摘要 平台运动对张力腿的非线性动力响应具有显著的影响。提出了新的更加符合实际的边界条件,分别采用线性的Euler-Bernoulli梁和非线性梁模型,分析了在不同的张力腿长度和平台激励条件下,线性张力腿模型与非线性模型在预测其动力响应时所得结果的差异。为了保证数值计算的正确性和可靠性,运用了两种不同的计算方法;Galerkin法,有限差分法进行数值求解。结果表明:非线性模型所得的张力腿流向响应幅值要比线性模型的小,且随着张力腿长度以及平台纵荡幅值的增加,非线性模型与线性模型的预测结果之间的差异会变得越来越显著。 The tendon is respectively modeled as a linear Euler-Bernoulli beam and a nonlinear beam which is undergoing coupled transverse and axial motion .The main aim of the paper is to compare the results obtained by linear model with those obtained by nonlinear model, under different platform excitations and with different tendon length. In order to ensure the correctness and the reliability of the numerical predictions, the governing equations are treated using two different solution methodologies, the first is implemented using Galerkin's method; and the second is a finite difference approximation scheme. It is observed that the magnitude of tendon response obtained by nonlinear model is smaller than that obtained by linear model, and the differences between dynamic response predictions according to linear and nonlinear model become more and more obvious when the tendon length and the platform surge amplitude become larger.
出处 《振动与冲击》 EI CSCD 北大核心 2008年第5期134-138,共5页 Journal of Vibration and Shock
基金 国家高技术研究发展计划(863计划)(课题编号2006AA09Z350) 中国科学院知识创新工程重要方向项目(课题编号KJCX2-YW-L02)资助
关键词 Euler—Bernoulli梁 有限差分法 GALERKIN法 参数振动 受迫振动 Euler-Bernoulli beam finite difference approximation scheme Galerkin method parametric excitation forced excitation
  • 相关文献

参考文献11

  • 1Patel M H, Seyed F B. Review of flexible riser modeling and analysis techniques [ J ]. Engineering Structure 1995,17 (4) : 293-304. 被引量:1
  • 2Han S M, Benaroya H. Nonlinear coupled transverse and axial vibration of a compliant structure 1 : formulation and free vibration [ J ]. J Sound Vib,2000,237 ( 5 ) : 837-73. 被引量:1
  • 3Han S M, Benaroya H. Nonlinear coupled transverse and axial vibration of a compliant structure 2: forced vibration[ J]. J Sound Vib 2000,237 ( 5 ) :874-99. 被引量:1
  • 4Yigit A S, Christoforou A P. Coupled axial and transverse vibrations of oil well drillstrings[ J]. Journal of Sound and Vibration 1996; 195(4) :617-27. 被引量:1
  • 5Han S M, Benaroya H, Comparison of linear and nonlinear responses of a compliant tower to random wave forces, Chaos [J]. Solitons and Franctals,2002,14 (2) :269-291. 被引量:1
  • 6Gadagi M M, Benaroya H. Dynamic response of an axially loaded tendon of a tension leg platform [ J ]. J Sound Vib 2006,293,38 -58. 被引量:1
  • 7Patel M H, Park H I. Combined axial and lateral responses of tensioned buoyant platform tethers[ J]. Engineering Structure 1995,17:687-95. 被引量:1
  • 8Park H I, Jung D H. A finite element method for dynamic analysis of long slender marine structures under combined parametric and forcing excitations [ J ]. Ocean Eng 2002,29: 1313-25. 被引量:1
  • 9Chatjigeorgiou I K. On the parametric excitation of Vertical elastic slender structures and the effect of damping in marine applications. Appl Ocean Res 2004,26:23-33. 被引量:1
  • 10周一峰,唐进元,何旭辉.轴向受力梁强非线性超谐波与次谐波共振的能量迭代法[J].中南大学学报(自然科学版),2005,36(4):698-703. 被引量:6

二级参考文献24

  • 1陈树辉,黄建亮,佘锦炎.轴向运动梁横向非线性振动研究[J].动力学与控制学报,2004,2(1):40-45. 被引量:17
  • 2Wickert JA, Mote CD. Current research on the vibration and stability of axially-moving materials. Shock and Vibration Digest, 1988, 20(5): 3~13. 被引量:1
  • 3Pellicano F, Vestroni F. Nonlinear dynamics and bifurcations of an axially moving beam. Journal of Vibration and Acoustics, 2000, 122:21~30. 被引量:1
  • 4Wickert JA, Mote Jr CD. Classical vibration analysis of axially moving continua. Journal of Applied Mechanic, 1990,57:738~744. 被引量:1
  • 5Wickert JA. Non-linear vibration of a traveling tensioned beam. International Journal of Non-Linear Mechanics,1992, 27(3): 503~517. 被引量:1
  • 6Riedel CH, Tan CA. Coupled, forced response of and axially moving strip with internal resonance. International Journal of Non-Linear Mechanics, 2002, 37:101~116. 被引量:1
  • 7Lau SL, Cheung YK, Chen SH. An alternative perturbation procedure of multiple scales for non-linear dynamics systems. ASME, Journal of Applied Mechanics, 1989, 56:667~675. 被引量:1
  • 8Chen SH, Cheung YK, Lau SL. On the internal resonance of multi-degree-of-freedom systems with cubic nonlinearity.Journal of Sound and Vibration, 1989, 128(1): 13~24. 被引量:1
  • 9Thurman AL, Mote CD. Free, periodic, nonlinear oscillation of an axially moving strip. ASME, Journal of Applied Mechanics, 1969, 36:83~89. 被引量:1
  • 10OEz H R, Pakdemirli M, Boyaci H. Non-linear vibrations and stability of an axially moving beam with timedependent velocity [J]. Int J Non-linear Mechanics,2001, 36: 107-115. 被引量:1

共引文献63

同被引文献17

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部