摘要
运用GSansone定理和旋转向量场理论,研究奇次微分系统x=-y(1-ax)(1-bx)+δx-lx2n+1,y=x(1-ax)(1-bx)的极限环的存在唯一性.证明了:当δl≤0时不存在极限环;当δl>0,|δ|<|l|max{a2n,b2n}时存在唯一的极限环;当δl>0,|δ|≥|l|max{a2n,b2n}时不存在极限环;当δl>0,a=b=0时存在唯一的极限环,若极限环存在,则当δ>0时是稳定的。
Based on the G. Sansome theorem and the theory of rotated vector fields,the existence and uniqueness of limit cycles of differential systems=-y(1-ax)(1-bx)+δx-lx2n+1,=x(1-ax)(1-bx)are studied. The conclusions are:if δl≤0 or δl>0 and|δ|≥|l|max{a2n,y2n} the limit cycles are not exist;if δl>0 and |δ|<|l|max{a2n,b2n}or δl> and a=b=0, the limit cycles are exist.If the limit cycles exist and δ>0 the limit cycles are instable; if the limit cycles exist and δ<0,the limit cycles are instable.
出处
《宁夏大学学报(自然科学版)》
CAS
1997年第4期316-319,共4页
Journal of Ningxia University(Natural Science Edition)
关键词
微分系统
极限环
存在性
唯一性
Differential systems
limit cycles
existence
uniqueness