期刊文献+

一种新的分层概念信息熵方法及其应用

A New Method of Hierarchical Concept Information Entropy and Its' Application
下载PDF
导出
摘要 经典ID3算法在构造决策树有偏向于取值多的属性的缺点,主要原因是对概念的分级不够细致到位,造成信息熵的计算不准确,从而导致构造决策树时偏向于取值多的属性.本文提出了有效而简洁的分层概念的信息熵方法,在决策树的构造过程中较好地克服了ID3算法存在的缺点,最后通过一个实例验证了分层概念的信息熵方法的有效性性. The conventional tree classification algorithm ID3 has the limitation of leaning towards more-value properties in the process of constructing a decision tree. The main reason is that the classification of concepts is not exact in ID3, which might lead to the incorrect calculation on information entropy,and cause the deflection on more-value properties in constructing the decision tree. The effectual and concise method of information entropy based on hierarchical concept is proposed in this paper, which can overcome the shortcoming of algorithm ID3 in the course of constructing decision tree. Finally the method of information entropy based on hierarchical concept is validated by an example.
作者 游福成
出处 《电子学报》 EI CAS CSCD 北大核心 2007年第B12期136-139,共4页 Acta Electronica Sinica
关键词 信息熵 分类器 概念分层 information entropy classifier concept hierarchy
  • 相关文献

参考文献9

二级参考文献62

共引文献114

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部