期刊文献+

等离子喷涂中基板传热的无网格分析

Meshless Analysis of the Substrate Temperature Evolution during Plasma Spray Process
下载PDF
导出
摘要 基于无网格彼得洛夫-伽辽金法(MLPG)建立了热喷涂中基板的三维传热数学模型。温度场由权函数、多项式基和一组未知系数近似构造,利用二次样条函数作为移动最小二乘中的权函数和局部弱形式的试函数,并采用罚函数法处理本征边界条件。详细研究了比例系数对数值精度的影响。与有限元法相比,无网格法可取得更好的收敛性和较高的精度。利用该方法计算等离子喷涂中基板温度,其计算结果与实验结果基本一致,表明该模型可用于求解热喷涂中的基板传热问题。 This paper focused on establishing a sound 3--D heat transfer formulation based on the meshless local Petrov--Galerkin(MLPG) method and was used to solve transient heat transfers in the plasma spraying. The unknown temperature functions were approximated and constructed by a weight function, a polynomial basis and a set of non--constant coefficients. A quartic spline function was selected as the moving least--squares weight and test function. A penalty technique was introduced to enforce the essential boundary conditions. The effect of scaling parameters on numerical solutions was discussed in detail. The substrate temperature was computed using this formulation numerically. It is found that MLPG solutions can achieve better convergence and higher accuracy compared with FEM and are in good agreement with those from the experiments, suggesting that the MLPG is feasible and efficient and therefore applicable to heat transfer problems during the plasma spray process.
出处 《中国机械工程》 EI CAS CSCD 北大核心 2008年第9期1026-1028,1078,共4页 China Mechanical Engineering
基金 国家自然科学基金资助项目(50474053,50675081,50475134)
关键词 无网格法 有限元法 传热 等离子喷涂 meshless method finite element method heat transfer plasma spray
  • 相关文献

参考文献7

  • 1王勖成,邵敏编著..有限单元法基本原理和数值方法 第2版[M].北京:清华大学出版社,1997:568.
  • 2Belytschko T, Lu Y Y, Gu L. Element- free Galerkin Methods [J]. International Journal for Numerical Methods in Engineering, 1994, 37 (2) : 229-256. 被引量:1
  • 3Atluri S N,Shen S P. The Meshless Local Petrov- Galerkin (MLPG) Method [ M]. Los Angeles: Tech Science Press, 2002. 被引量:1
  • 4Liu G R, Gu Y T. An Introduction to Meshfree Methods and Their Programming [ M]. Berlin: Springer Press, 2004. 被引量:1
  • 5Lancaser P, Salkauskas K. Surfaces Generated by Moving Least Squares Methods[J]. Mathematics of Computation, 1981, 37(155): 141-158. 被引量:1
  • 6龚曙光,陈艳萍,黄云清.无网格法在形状优化中的应用研究[J].中国机械工程,2006,17(12):1290-1294. 被引量:3
  • 7Smolinski P, Palmer T. Procedures for Multi-time Step Integration of Element-free Galerkin Methods for Diffusion Problems[J]. Computers and Structures, 2000, 77(2): 171-183. 被引量:1

二级参考文献16

  • 1顾元宪,程耿东.结构形状优化设计数值方法的研究和应用[J].计算结构力学及其应用,1993,10(3):321-335. 被引量:32
  • 2龚曙光,黄云清,谢桂兰,邱爱红.基于虚荷载变量的形状优化和灵敏度分析[J].计算力学学报,2005,22(2):183-188. 被引量:7
  • 3Yang R J, Choi K K, Haug E J. Numerical Considerations in Structural Component Shape Optimization. ASME Journal of Mechanics, Transmission and Automation in Design, 1986, 107 (3); 334-339 被引量:1
  • 4Bennett J A, Bokin M E. Structural Shape Optimization with Geometric Description and Adaptive Refinement. AIAA Journal, 1985, 23(3): 458-464 被引量:1
  • 5Diaz A K, Kikuchi N, Papalambros P, et al.Design of Optimal Grid for Finite Element Method.Journal of Structural Mechanics, 1983, 11(2). 215-230 被引量:1
  • 6Bokin M E, Bennett J A. Shape Optimization of Three dimension Folded Plate Structures. AIAA Journal, 1985, 23(11): 1804-1810 被引量:1
  • 7Belytschko T, Krongauz Y, Organ D,et al. Meshless Method: an Overview and Recent Development. Computer Methods in Applied Mechanics and Engineering, 1996, 139:3-47 被引量:1
  • 8Belytschko T, Lu Y Y, Gu L. Element Free Galerkin Method. International Journal of Numerical Methods in Engineering, 1994,37; 229-256 被引量:1
  • 9Kim N H, Choi K K, Chen J S, et al. Meshfree Analysis and Design Sensitivity Analysis for Shell Structures. International Journal for Numerical Methods in Engineering, 2002, 53:2087-2116 被引量:1
  • 10Rajan S D, Belegundu A D. Shape Optimal Design Using Fictitious Loads. AIAA Journal 1989, 27(1) :102- 107 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部