期刊文献+

一种新的基于直接最小二乘椭圆拟合的肤色检测方法 被引量:2

A New Skin Color Detection Algorithm Based on Direct Least Square Ellipse Fitting
下载PDF
导出
摘要 肤色检测是计算机视觉中的一个重要问题,本文提出了一种新的基于直接最小二乘椭圆拟合的肤色检测方法,其基本思想是根据肤色样本分布区域的边界数据点采用曲线拟合的方法得到肤色分布区域的边界方程。在实现时,为了解决直接在笛卡儿坐标系中提取肤色样本分布区域边界数据的困难,算法采用了一种新的解决思路,即首先把训练肤色样本在色度空间的统计分布转化为图像的形式,然后再利用边缘检测方法得到肤色分布区域的边界数据。根据所得的边界数据点用直接最小二乘椭圆拟合方法便可得到肤色分布区域的椭圆边界,方法简单直观。实践表明,该算法能完成对各种不同环境条件下所拍摄图像的肤色分割,效果理想,其性能明显优于常用的域值界定法和单高斯模型法。 Skin color detection is an important problem in computer vision. A new skin color detection algorithm based on direct least square ellipse fitting is proposed in this paper. The basic idea of the proposed algorithm is to attain the skin color distribution boundary equation via curve fitting. In order to solve the difficulty of acquiring the boundary data of skin color distribution region in the Cartesian coordinate, a new method is used, that is the statistical distribution of skin color training samples in chrominance space is transformed into the image form firstly. Then the data on the edge of the skin color distribution region are extracted via edge detection. Finally ,the skin color distribution ellipse boundary can be attained using direct least square ellipse fitting. The proposed algorithm proves to be simple and intuitive, experimental results on images taken under a wide range of different environment demonstrate that it is efficient and superior to the method using explicit skin region boundary and single Gaussian model.
出处 《信号处理》 CSCD 北大核心 2008年第2期192-196,共5页 Journal of Signal Processing
基金 国家自然科学基金(60672094)
关键词 肤色分割 椭圆拟合 人脸检测 Gaussian模型 skin color segmentation ellipse fitting face detection Ganssian model
  • 相关文献

参考文献11

  • 1Vezhnevets. V, Sazonov. V, and Andreeva. A, A Survey on Pixel-Based Skin Color Detection Techniques. In Graphicon, Moscow, Russia, Sept,2003. 被引量:1
  • 2Jones M J and Rehg J M. Statistical Color Models With Application to Skin Detection. Int'l J. Computer Vision. 2002,46( 1 ) :81 -96. 被引量:1
  • 3Lee. J. Y. , and Yoo, S. I. An elliptical boundary model for skin color detection. In Proc. of the International Conference on Imaging Science, Systems, and Technology ,2002. 被引量:1
  • 4Chai D. , Ngan, K. N. Face Segmentation Using Skin-Color Map in Videophone Applications, IEEE Trans. on Circuits and Systems for Video Technology. 1999, 9 ( 4 ): 551 -564. 被引量:1
  • 5Garcia. C ,Tziritas, G. Face Detection Using Quantized Skin Color Regions Merging and wavelet Packet Analysis. IEEE Trans. on Multimedia, 1999,1 (3) :264 - 277. 被引量:1
  • 6Bojic N and Pang K K. Adaptive skin segmentation for head and shoulder video sequences. Visual communications and Image Processing, SPIE ,2000,4067:704 - 711. 被引量:1
  • 7Sigal L. , Sclaroff S, and Athitsos Vassilis. Estimation and Prediction of Evolving Color Distributions for Skin Segmentation Under Varying Illuminagion. IEEE CVPR. 2000,2: 152 - 159. 被引量:1
  • 8Yang J. , Lu W. and Waibel A. Skin color modeling and adaptation. ACCV, 1998,687-694. 被引量:1
  • 9Greenspan H. , Goldberger J, Eshet I.. Mixture model for face-color modeling and segmentation. Pattern Recognition Letters ,2001,22 : 1525-1536. 被引量:1
  • 10Jure Kovac, Peter Peer, Franc Solina. Human skin color clustering for face detection. Faculty of Computer and Information Science, 2003,144 - 148. 被引量:1

同被引文献30

  • 1高华,王雅琴.基于计算机视觉的农产品形状分级研究[J].计算机工程与应用,2004,40(14):227-229. 被引量:26
  • 2应义斌,成芳,马俊福.基于最小矩形法的柑桔横径实时检测方法研究[J].生物数学学报,2004,19(3):352-356. 被引量:31
  • 3Cha Z and Zhang Z Y. A Survey of Recent Advances in Face Detection[ R]. Microsoft Research, 2012. 被引量:1
  • 4Freund Y, Schapire R E. Experiments with a new boos- ting algorithm[C]. Proc. of the 13th Conf. Machine Learning, 1996 : 148-156. 被引量:1
  • 5Schapire R E, Singer Y. Improved boosting algorithms using confidence-rated predictions [ J ]. Machine Learning, 1999, 37(3) :297-336. 被引量:1
  • 6Friedman J, Hastie T and Tibshirani R. Additive Logistic Regression : a Statistical View of Boosting [ J ]. The An- nals of Statistics, 2000, 28(2):337-374. 被引量:1
  • 7Viola P, Jones M J. Robust real-time object detection[J]. International Journal of Computer Vision, 2004, 57 (2) ~ 137-154. 被引量:1
  • 8Wu B, Ai H, Huang C, et al. Fast rotation invariant multi- view face detection based on real adaboost[ C]. Proc. of the 6th IEEE Inter. Conf. Automatic Face and Gesture Recogni- tion, 2004:79- 84. 被引量:1
  • 9Xiao R, Zhu L, Zhang H J. Boosting Chain Learning for Object Detection[ C ]. The 9th Inter. Conf. Computer Vi- sion, 2003:709-715. 被引量:1
  • 10Minh-Tri Pham, Viet-Dung D. Hoang, Tat-Jen Cham. De- tection with multi-exit asymmetric boosting [ C ]. Inter. Conf. Computer Vision and Pattern Recognition, 2008 : 1- 8. 被引量:1

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部