摘要
通过坐标变换把折射率椭球方程x^2/n_1~2+y^2/n_2~2+z^2/n_3~2=1从主介电坐标系Oxyz转换到另一个新的坐标系Ox′y′z′中,这个新的坐标系Ox′y′z′可以通过将坐标系Oxyz绕原点旋转得到.只要使新的折射率椭球方程与x′y′平面的交线是一个圆,就可以确定z′轴就是晶体的光轴.由此得出了双轴晶体光轴角的计算公式.
The optic axial angle of biaxial crystal is calculated by coordinate transforming the index ellipsoid equation X^2/n1^2+y^2/n2^2+z^2/n3^2=1from the principal dielectric coordinate system to another new coordinate system.This new coordinate system Ox′y′z′is gained by rotating the coordinate system Oxyz. It is confirmed that z′axis is optical axis if the intersection of the new index ellipsoid and x′y′ plane is a circularity.
出处
《大学物理》
北大核心
2008年第5期4-5,14,共3页
College Physics
关键词
双轴晶体
光轴角
折射率椭球
坐标变换
biaxial crystal
optic axial angle
index ellipsoid
coordinate transformation