摘要
研究了具有变分结构的拟线性椭圆型方程组能量泛函的极小点的存在性,得到了椭圆问题弱解的一致有界性,结合集合收敛的意义,推广了半线性椭圆型方程组弱解对边值的稳定性结果.
By studying the existence of minimal points of the energy functional to a class of quasilinear elliptic systems, the uniform boundness of weak solutions for the elliptic problems with variable boundary data in a suitable trace space was given. This paper extends linear elliptic systems with respect to boundary data to the set convergence. the stability result of weak solutions for some semia class of quasilinear elliptic systems in the sense of
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2008年第3期504-507,共4页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金资助项目(10271077)
上海财经大学211科研基金资助项目(211-8-5)
关键词
拟线性椭圆型方程组
极小点
边值问题
稳定性
quasilinear elliptic systems
minimal point
boundary value problem
stability