摘要
This paper studies the tracking control problem of a free-floating space robot in a task space. Considering the model uncertainties and external disturbance, a robust sliding mode controller is proposed using the Lyapunov direct method and dissipative theory. To eliminate the chattering phenomenon, an radial basis function (RBF) neural network is applied to replace the discontinuous part of the control signal. A novel on-line learning method of the weights and parameters of the RBF neural network established using Lyapunov function assures the stability of the system. It is proved that the proposed controller can guarantee that the L2 gain from disturbance to tracking error is lower than the given index y. Simulation results show that the control method is valid.
This paper studies the tracking control problem of a free-floating space robot in a task space. Considering the model uncertainties and external disturbance, a robust sliding mode controller is proposed using the Lyapunov direct method and dissipative theory. To eliminate the chattering phenomenon, an radial basis function (RBF) neural network is applied to replace the discontinuous part of the control signal. A novel on-line learning method of the weights and parameters of the RBF neural network established using Lyapunov function assures the stability of the system. It is proved that the proposed controller can guarantee that the L2 gain from disturbance to tracking error is lower than the given index y. Simulation results show that the control method is valid.
基金
the National High-Tech Research & Development Program, China