期刊文献+

基于马尔可夫随机场的纹理图像并行分割 被引量:1

Parallel segmentation of textured images by using Markov random field
下载PDF
导出
摘要 基于消息传递接口(Message Passing Interface,MPI)和消息传递并行编程模型,提出了一种针对计算机集群(Cluster)的纹理图像并行分割算法。该算法使用马尔可夫随机场作为纹理特征,通过将图像分块,把特征提取的计算量均匀的分布到并行系统中的各个节点上,从而极大地减少了计算时间。在遥感图像上的实验发现,该算法在4机并行的环境下可以取得与单机串行程序一样精确的分割,而耗时仅为串行程序的31.95%。令人满意的实验结果表明该并行算法不但可以有效的应用于纹理图像分割,而且也为使用计算机集群实现高时间复杂度的图像处理提供了有益的启示。 This paper presents a parallel segmentation algorithm for textured images on a computer cluster. Adopting the Message Passing Interface( MPI)and the message passing programming model, this algorithm splits an image into a set of rectangular regions and sends each region to a computer,so that the Markov Random Field(MRF) can be estimated as the texture feature of each pixel on all computers simultaneously. As a result, the time cost of segmentation is greatly reduced. The parallel algorithm has been applied to the segmentation of remote sensing images. The comparative experiments show that, on a four - computer cluster, the parallel algorithm is 3.13 times faster than the serial one. The satisfying results demonstrate that proposed algorithm can provide not only faster segmentation but some inspiration for parallel implementation of computational intensive image processing algorithms.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第14期181-183,共3页 Computer Engineering and Applications
关键词 图像分割 纹理图像分析 马尔可夫随机场 并行计算 image segmentation image texture analysis Markov random field parallel computation
  • 相关文献

参考文献6

  • 1Baker M. Cluster computing white paper [ EB/OL]. (2000-12). University of Portsmouth, UK. http ://dsg. port. ac. uk/- mab/Links/ tfcc/WhitePaper/final -paper. pdf. 被引量:1
  • 2都志辉编著..高性能计算并行编程技术 MPI并行程序设计[M].北京:清华大学出版社,2001:336.
  • 3Max M, Christophe C, Patrick P, et al. Sonar image segmentation using an unsupervised hierarchical MRF model [ J ]. IEEE Transactions on Image Processing,2000(9) :1216-1231. 被引量:1
  • 4Barker S A. Image segmentation using Markov random field models[ D]. Dept Eng, Cambridge Univ, 1998. 被引量:1
  • 5Deng H, Clausi D A. Unsupervised image segmentation using a simple MRF model with a new implementation scheme[ J]. Pattern Recognition, 2004 ( 37 ) : 2323 - 2335. 被引量:1
  • 6Du G,Yeo T S. A novel multifractal estimation method and its application to remote image segmentation [ J]. IEEE Transactions on Geo-Science Remote Sensing,2002,40(4) :980-982. 被引量:1

同被引文献14

引证文献1

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部