期刊文献+

基于核方法的并行模糊聚类算法 被引量:8

Parallel fuzzy clustering algorithm based on kernel method
下载PDF
导出
摘要 介绍并分析了模糊C-均值聚类算法、基于核方法的模糊C-均值聚类算法以及硬聚类算法。将硬聚类算法和模糊聚类算法结合起来,利用硬聚类算法初始化聚类中心,有效的减少模糊聚类算法的迭代次数。针对海量数据处理问题,将改进后的算法并行化,有效地提高了数据处理速度和效率,并在分布式互联PC环境下进行了性能测试。测试结果表明,基于核方法的并行模糊聚类算法具有很好的规模增长性和加速比。 Fuzzy C-means clustering algorithms (FCM), Fuzzy C-means clustering algorithms based on kernel method (FKCM) and C-means clustering algorithms (CM) are introduced and studied. FKCM and CM are put together, using CM to initialize centroids of FKCM to reduce iterations efficiently. In order to resolve the large amount of data, FKCM are made parallel, which improved the rapidity and efficiency of FKCM. And on the distributed linked PC/workstation, the parallel clustering algorithm is implemented. The result shows that the parallel algorithm has good sizeup and speedup.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第8期1881-1883,共3页 Computer Engineering and Design
基金 广东省自然科学基金项目(05011896) 广东省教育厅自然科学基金项目(Z03080)
关键词 并行 模糊聚类 核方法 分布式 加速比 parallel fuzzy clustering kernel method distributed speedup
  • 相关文献

参考文献8

二级参考文献32

  • 1Inderjit S D, Eharmendra S M. Concept decompositions for large sparse text data using clustering [ J]. Machine Learning, 2001, 42(1) : 143 - 175. 被引量:1
  • 2Hathaway R J, Davenport J W, Bezdek J C. Relational dual of the c-means algorithms [J]. Pattern Recognition, 1989,22(2) : 205 - 212. 被引量:1
  • 3Hathaway R J, BezAek J C. NERF c- means: non-euclidean relational fuzzy clustering [J]. Pattern Recognition, 1994,27(3) : 429 - 437. 被引量:1
  • 4Krishnapuram R, Joshi A, Yi L. A fuzzy relative of the kmedoids algorithm with application to web document and snippet clustering [ A]. In: Proceedings IEEE Ind Conference Fuzzy Systems-FUZZ_IEEE 1999[C]. Korea, 1999. 1281-1286. 被引量:1
  • 5Frigui H, Krishnapuram R. Clustering by competitive agglomeration [J]. Pattern Recognition, 1997, 30(7): 1109-1119. 被引量:1
  • 6Setnes M, Kaymak U. Extended fuzzy c-means ruth volume prototypes and cluster merging [ A]. In: Proceedings of Sixth European Congress on Intelligent Techniques and Soft Computing [C]. Aachen, Germany, 1998. 1360-1364. 被引量:1
  • 7Lamehamedi H, Bensaid A D, Kebbal E G, et al. Adaptive programming: application to a semi-supervised point prototype clustering algorithm [A]. In: International Conference on Parallel and Distributed Processing Techniques [C]. Nevada, USA, 1999. 2753-2759. 被引量:1
  • 8Khoo V, Dearnaley D, Finnigan D, et al. Magnetic resonance imaging (MRI) : Considerations and applications in radiotherapy treatment planning [J]. Radiotherapy and Oncology, 1997, 42: 1- 15. 被引量:1
  • 9Bczdek J, Pal S. Fuzzy Models for Pattern Recognition [M]. Piscataway: IEEE Press, 1992. 被引量:1
  • 10Bezdek J. Pattern Recognition with Fuzzy Objective Function Algorithm [M]. New York: Plenum Press, 1981. 被引量:1

共引文献59

同被引文献56

引证文献8

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部