期刊文献+

基于量子神经网络的电网故障诊断算法 被引量:36

A Quantum Neural Network Based Fault Diagnosis Algorithm for Power Grid
下载PDF
导出
摘要 传统的人工智能方法处理电网故障诊断中交叉数据模式识别问题的效果不甚理想。为此,作者提出运用量子神经网络进行故障诊断的算法,借鉴量子力学的相关概念,不断更新各层神经元的连接权以及隐含层各神经元的量子间隔,以达到提高故障诊断容错性的目的。仿真结果表明,在保护动作信息不完备的情况下,该算法的故障判断准确性明显优于传统神经网络。另外,该算法对存在一定错误数据的故障信息也具有良好的识别能力。 When traditional artificial intelligence approaches are used to recognize the cross data pattern in the power grid fault diagnosis, its result is not ideal. For this reason, the authors propose a new fault diagnosis algorithm in which the conception of quantum neural network is adopted. In the proposed algorithm, the connection weights of neurons of various layers as well as the quantum intervals of neurons in hidden layers are constantly updated to attain the expected purpose of improve the fault toleration in power grid fault diagnosis. Simulation results show that under the condition of incomplete protection action information the accuracy of fault recognition by the proposed algorithm is better than those by traditional neural network methods. Otherwise, the proposed algorithm can also recognize such fault information in which certain incorrect data exists..
出处 《电网技术》 EI CSCD 北大核心 2008年第9期56-60,共5页 Power System Technology
基金 教育部优秀新世纪人才支持计划项目(NCET-06-0799) 四川省杰出青年基金项目(06ZQ026-012)~~
关键词 量子神经网络 故障诊断 激励函数 电力系统 quantum neural network fault diagnosis incentive function electric power system
  • 相关文献

参考文献16

  • 1Bennett C H, Steck J E, Behrman E C. Quantum information and computation[J]. Nature, 2000, 404(3): 247-255. 被引量:1
  • 2Kak S C. On quantum neural computing[J]. Information Sciences, 1995, 13(2): 143-160. 被引量:1
  • 3Karayiannis N B, Pumshothaman G. Fuzzy pattern classification using feed forward neural networks with multilevel hidden neurons [J]. IEEE International on Neural Networks, 1994, 5(2): 127-132. 被引量:1
  • 4Gopathy P, Nicolaos B, Karayiannis N B. Quantum neural networks: Inherently fuzzy feedforward neural networks[J]. IEEE Trans on Neural Networks, 1997, 8(3): 679-693. 被引量:1
  • 5Behman E C, Chandrashkar V G, Wang C K. A quantum neural network computes entanglement[J]. Physical Review Letters, 2002, 16(1): 152-159. 被引量:1
  • 6Narayanan A, Menneer T. Quantum artificial neural network architectures and components[J]. Information Sciences, 2000, 128(3): 231-255. 被引量:1
  • 7Zhou J, Qing G, Krzyzak A. Recognition of handwritten numerals by quantum neural network with fuzzy features[J]. International Journal on Document Analysis and Recognition, 1999, 2(1): 30-36. 被引量:1
  • 8Li F, Zhao S G, Zheng B Y. Quantum neural network in speech recognition[C]. International Conference on Signal Processing, Beijing, 2002. 被引量:1
  • 9Hao S Y. Quantum neural network for image watermarking [C]. International Symposium on Neural Networks, Heidelberg, Germany, 2004. 被引量:1
  • 10Leonard J. Improvement of back propagation for training neural networks[J]. Computer Engineering, 1990, 14(3): 337-340. 被引量:1

二级参考文献21

  • 1卢志恒,林建恒,胡岗.随机共振问题Fokker-Planck方程的数值研究[J].物理学报,1993,42(10):1556-1566. 被引量:21
  • 2Yang H T,Chang W Y,Huang C L.Power System Distributed On—line Fault Section Estimation Using Decision Tree Based Neural Nets Approach.IEEE Trans on Power Delivery,1995,10(1):540~546. 被引量:1
  • 3Vazquez M E,Chacon M O L,Altuve F H J.An On—line Expert System for Fault Section Diagnosis in Power Systems.IEEE Trans on Power Systems,1997.12(1):357~362. 被引量:1
  • 4Gammaitoni L, Hanggi P. Stochastic resonance[J]. Rev Mod Phys,1998, 70(1): 223-246. 被引量:1
  • 5Bulsara A R, Gammaitoni L. Turning in to noise[J]. Phys Today,1996, 49(3): 39-45. 被引量:1
  • 6Gingl Z, Vajtai R, Kiss L B. Signal-to-noise ratio gain by stochastic resonance in a bistable system [J]. Chaos, Solitons & Fractals, 2000, (11): 1929-1932. 被引量:1
  • 7Godivier X, Chapeau-Blondeau F. Noise-assisted signal transmission in a nonlinear electronic comparator: experiment and theory[J]. Signal Processing, 1997, 56(3): 293-303. 被引量:1
  • 8Ansishchenko VS, Safonova MA, Chua LO. Stochastic resonance in Chua's circuit driven by amplitude or frequency modulated signals [J]. Int J Bifurc Chaos, 1994, 4(2): 441-446. 被引量:1
  • 9Sandblom J, Galvanovskis J. Electromagnetic field absorption in stochastic cellular systems: enhanced signal detection in ion channels and calcium oscillators[J]. Chaos, Solitons & Fractals 2000, 11(12): 1905-1911. 被引量:1
  • 10Collins J J, Chow C C, Imhoff T T. Stochastic resonance without tuning[J]. Nature, 1995, 376(6537): 236-238. 被引量:1

共引文献134

同被引文献440

引证文献36

二级引证文献509

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部