期刊文献+

Calderón-Zygmund算子在Hb^p空间上的有界性

The Boundedness of Calderón-Zygmund Operators on H_b^p Spaces
原文传递
导出
摘要 众所周知,如果Calderón-Zygmund算子T满足T~*(1)=0,则算子T在H^p,n/(n+ε)<p≤1上有界.这一经典结果的最新推广形式是:如果Calderón-Zygmund算子T满足T~*(b)=0,则算子T是从经典Hardy空间H^p到一类新的Hardy空间H_b^p有界的,其中b是一个拟增长函数.本文建立了算子Tb从新的Hardy空间H_b^p到自身或到经典Hardy空间H^p的有界性,并结合已知的结果,完备了Calderón-Zygmund算子在Hardy空间上的有界性. It is well known that Calderón-Zygmund operators T are bounded on H^p for n/n+ε 〈 P ≤ 1 provided T^*(1) = 0. accretive function, was recently introduced A new Hardy space Hb^p, where b is a para- and the boundedness of Calderón-Zygmund operators T from the classical Hardy space H^p to the new Hardy space Hb^p was also proven if T^*(b) = 0. In this note, the boundedness from the new Hardy space Hb^p to either Hb^p or H^p is obtained. These results together with the results mentioned above complete the boundedness of Calderón-Zygmund operators on Hardy spaces.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2008年第3期487-492,共6页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10771130,10571016) 北京市自然科学基金(1072006)
关键词 CALDERÓN-ZYGMUND算子 Hardy空间H^p和Hb^p 拟增长函数 Calderón-Zygmund operator Hardy spaces H^p and Hb^p para-accretive function
  • 相关文献

参考文献6

  • 1Han Y., Lee M., Lin C., Hardy spaces and the Tb-theorem, J. of Geom. Anal., 2004, 14: 291-318. 被引量:1
  • 2Meyer Y., Coifman R., Wavelets, Calderón-Zygmund and multilinear operators, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1997, 48. 被引量:1
  • 3David G., Journé J. L., Semmes S., Oprateurs de Calderón-Zygmund, fonctions para-zccretives et interpolation, Revista Mat. Iberoamericana, 1985, 1: 1-56. 被引量:1
  • 4Han Y., Calderón-type reproducing formula and the Tb theorem, Revista Mat. Iberoamericana, 1994, 10: 51-91. 被引量:1
  • 5Meyer Y., Les nouveaux operateurs de Calderón-Zygmund, Asterisque, 1985, 131: 237-254. 被引量:1
  • 6Chen W., Han Y., Miao C., A note on the boundedness of Calderón-Zygmund operators on Hardy spaces, J. Math. Anal. Appl., 2005, 310: 57-67. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部