期刊文献+

基于搜寻者优化算法的电力系统无功优化 被引量:2

Reactive Power Optimization in Power System Base on Seeker Optimization Algorithm
下载PDF
导出
摘要 将搜寻者优化算法(SOA—Seeker Optimization Al-gorithm)应用到电力系统无功优化中去,以网损最小为目标函数,建立了SOA无功优化的数学模型。由发电机端电压、变压器分接头和电容器组3部分控制变量构成初始矩阵。SOA算法模拟人的随机搜索行为,对利己行为、利他行为、预动行为和不确定性推理行为进行分析和建模,以确定搜索方向和步长进行解的全局搜索。对IEEE30、IEEE57测试系统进行了测试,仿真结果表明,SOA算法具有较好的全局寻优能力和较快的收敛速度,能有效地应用到电力系统无功优化中去。 Seeker Optimization Algorithm (SOA) is used in reactive power optimization problem in electric power system. The model of reactive power optimization is established by taking the minimum network losses as the objective. Generator voltage, transformer tap and capacitor tank are adopted to establish the initial matrix in reactive power optimal modeling. The new algorithm is based on simulation of human random searching behaviors, such as egotistic be- havior, altruistic behavior, pro-activeness behavior and uncertainty reasoning behavior. Theses behaviors are modeled to determine search direction and step length. The algorithm is applied to IEEE30 and IEEE57 systems. Simulation results show that the seeker optimization algorithm has a fast convergence speed and good global search ability, and can be efficiently used for reactive power optimization.
出处 《现代电力》 2008年第2期38-41,共4页 Modern Electric Power
关键词 无功优化 全局优化 搜寻者优化算法 粒子群优化 电力系统 reactive power optimization global optimization seeker optimization algorithm particle swarm optimization power system
  • 相关文献

参考文献9

  • 1Krusienski D J, Jenkins W K. Design and Perforance of Adaptive Systems Based on Structured Stochastic Optimization [J]. IEEE Circuits and Systems Magazine, 2005, 5(1): 8-20. 被引量:1
  • 2赵娜,张伏生,魏平,刘学.基于改进多粒子群算法的电力系统无功优化[J].西安交通大学学报,2006,40(4):463-467. 被引量:21
  • 3黄伟,张建华,张聪,刘自发,魏志连,潘东立.基于细菌群体趋药性算法的电力系统无功优化[J].电力系统自动化,2007,31(7):29-33. 被引量:26
  • 4夏可青,赵明奇,李扬.用于多目标无功优化的自适应遗传算法[J].电网技术,2006,30(13):55-60. 被引量:32
  • 5Chaohua Dai, Yunfang Zhu and Weirong Chen. Seeker Optimization Algor-ithm [C]. Lecture Notes in Artificial Intelligence, Y. Wang, Y. Cheung and Liu H (Eds.), Springer-Verlag Berlin Heidelberg: CIS 2006, 167-176, 2007. 被引量:1
  • 6Castro J L. Fuzzy Logic Controllers are Universal Approximators [J]. IEEE Trans. on Systems, Man and Cybernetics, 1995, 25(4) : 629- 634. 被引量:1
  • 7Shi Y, Eberhart R. Empirical Study of Particle Swarm Optimization [C]. in Proc, of the 1999 Congress on Evolutionary Computation, 1945 - 1950. 被引量:1
  • 8Clerc M, Kennedy J. The Particle Swarm-Explosion, Stability, and Convergence in A Multidimensional Complex Space [J]. IEEE Trans. Evol. Comput. 2002, 6(1): 58-73. 被引量:1
  • 9Liang J J, Qin A K, Ponnuthurai Nagaratnam Suganthan and Baskar S. Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions [J]. IEEE Trans. Evol. Comput, 2006, 10(3): 67-82. 被引量:1

二级参考文献50

共引文献74

同被引文献15

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部