期刊文献+

带有Leslie-Gower功能性反应的三维食物链模型研究 被引量:2

Study of the Three Dimensional Food-chain Model with Leslie-Gower Functional Response
原文传递
导出
摘要 研究了离散时间上带有Leslie-Gower功能性反应的三维食物链模型.首先给出保证系统永久持续生成的条件,由于系统系数的周期性,正周期解是存在的,最后通过在正的周期解领域内线性化系统,并通过构造Lyapunov函数,我们得出了保证系统正周期解全局稳定的条件. We consider a three dimesional food-chain model with Leslie-Gower functional response on discrete time. At first sufficient conditions which guarantee the permanence of the model are obtained. Because the coefficients in the model are periodic, the existence of periodic solutions is also obtained. Finally, by llnearizatlon of the model at the neighborhood of postive periodic solution and constructing a Lyapunov function, sufficient conditions are obtained to ensure the global stability of the positive periodic solution.
出处 《数学的实践与认识》 CSCD 北大核心 2008年第9期115-122,共8页 Mathematics in Practice and Theory
关键词 食物链模型 Leslie—Gower功能性反应 周期解 predator-prey system topological degree Leslie-Gower scheme periodic solution
  • 相关文献

参考文献9

  • 1Amine Z, Ortega R. A periodic prey-predator system[J]. J Math Anal Appl, 1994,185 (2) : 477-489. 被引量:1
  • 2Tang S Y, Chen L S. The periodic predator-prey Lotka-Volterra model with impulsive effect[J]. Mech Med Biol, 2002,2(1) : 1-30. 被引量:1
  • 3Leslie P H. Some further notes on the use of matrices in population mathematics[J]. Biometriea, 1948,35:213- 245. 被引量:1
  • 4Leslie P H, Gower J C. The properties of a stochastic model for the predator-prey type of interaction between two species[J]. Biometrica, 1960,47 : 219-234. 被引量:1
  • 5Pielou E C. An Introduction to Mathematical Ecology[M]. Wiley-Interscience, New York,1969. 被引量:1
  • 6Azit-Alaouui M A, Daher-Okiye M. Boundedness and global stability for a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes[J]. Appl Math Lett,2003,16(7):1069-1075. 被引量:1
  • 7Fan M, Wang K. Periodic solutions of a discrete time non-autonomous ratio-dependent predator-prey system[J]. Math Comput Mgdel,2002,35(9):951-961. 被引量:1
  • 8Liu P, Gopalsamy K. Global stability and Chaos in a population model with pieeewise constant arguments[J]. Appl Math Comput, 1999,101 (1):63-88. 被引量:1
  • 9Wang W D, Lu Z Y. Globle stablity of discrete models of Lotka-Volterra type[J]. Non Anal,1999,35(8):1019- 1030. 被引量:1

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部