期刊文献+

保险资金投资于风险资产的破产概率 被引量:2

Ruin probability for risky investment of insurance capital
下载PDF
导出
摘要 研究了保险资金投资于风险资产的破产概率问题.在索赔来到过程为更新过程,索赔额分布为 Pareto型的场合下,利用 Black-scholes 公式的结果改写了盈余过程的表达式,并得到了有限时间与无穷时间破产概率的渐近表达公式,从而获得了破产概率与更新函数之间的联系.不仅如此,还得到了破产概率与波动因子之间的联系.所得结果拓展了 Kluppelberg 等和 Tang 等人的结果. This paper researches the ruin probability of investing in risky asset by insurance capital. Under the assumptions that the claim-arrival process follows renewal process, and the claimsize is of Pareto distribution, by using Black-Scholes formula to re-express surplus process, an asymptotic formula of finite and infinite time ruin probability is obtained. Relationship between ruin probability and renewal function is derived. In addition, the coefficient is also obtained. The results extend the connection between ruin probability and volatility corresponding conclusions of Kluppelberg' s, andTang's.
作者 江涛
出处 《系统工程学报》 CSCD 北大核心 2008年第2期148-153,共6页 Journal of Systems Engineering
基金 国家自然科学基金资助项目(70471071)
关键词 有限时间破产概率 Black—Scholes公式 Pareto索赔额 finite time ruin probability Black-Scholes formula Pareto-type claimsize
  • 相关文献

参考文献22

  • 1Rolski T, Schmidli H, Schmidt V, et al. Processes for Insurance and Finance[ M]. Chichester: John Wiley Sons, 1999. 被引量:1
  • 2Browne S. Optimal investment policies for a firm with a random risk process : Exponential utility and minimizing the probability of ruin [ J ]. Mathematical Methods of Operations Research, 1995, 20 (4) : 937-958. 被引量:1
  • 3Browne S. Survival and growth with liability: Optimal portforlio strategies in continuous time[J]. Mathematical Methods of Operations Research, 1997, 22(2) : 468-493. 被引量:1
  • 4Frolova A G, Kabanov Y M, Pergamenshchikov S M. In the insurance business risky investments are dangerous [ J ]. Finance and Stochastics, 2002, 6(2): 227-235. 被引量:1
  • 5Gaier J, Grandits P, Schachermayer W. Asymptotic ruin probability and optimal investment [ J ]. Annals of Applied Probability, 2003, 13(3): 1054-1076. 被引量:1
  • 6Hojgaard B, Taksar M. Optimal proportional reinsurance policies for diffusion models [ J ]. Scandinavian Actuarial Journal, 1998, (2) : 166-180. 被引量:1
  • 7Hojgaard B, Taksar M. Optimal proportional reinsurance policies for diffusion models with transaction costs[ J]. Insurance: Mathematics and Economics, 1998, 22(1) : 41-51. 被引量:1
  • 8Nyrhinen H. Finite and infinite time ruin probabilities in a stochastic economic environment[J]. Stoch. Proc. Appl, 2001, 92(2) : 265-285. 被引量:1
  • 9Schmidli H. Optimal proportional reinsurance policies in a dynamic setting[J]. Scandinavian Actuarial Journal, 2001, (1) : 55-68. 被引量:1
  • 10Schmidli H. On optimal investment and subexponential claims [ J ]. Insurance: Mathematics and Economics, 2005, 36 (2) : 25-35. 被引量:1

二级参考文献5

共引文献16

同被引文献34

  • 1R.卡尔斯.现代精算风险理论[M].唐启鹤,胡太忠,成世学,译.北京:科学出版社.2005. 被引量:7
  • 2王雪梅.保险公司破产模型研究[D].成都:西南交通大学,2011.. 被引量:1
  • 3Cai,J. Ruin probability and penalty functions with stochastic rates of interest[J]. Stochastic Process. Appl, 2004,(112):53--78. 被引量:1
  • 4Chen,Y and Ng,K. W. The ruin probability of the renewal model with constant interest force and negatively dependent heavy-- tailed claims[J]. Insurance, Mathematics and Economics, 2007,(40): 415 - 423. 被引量:1
  • 5Kaas R,Goovaerts M,Dhaene J. M. Denuit. Modern Actuarial Risk Theory[J]. 2001, (89). 被引量:1
  • 6Tang,Q. The finite time ruin probability of the compound Poisson model with constant interest force[J].Appl. Probab,2005,42(3):608 - 619. 被引量:1
  • 7Crame H. On the Mathematical Theory of Risk[M]. Skandia Jubilee Volume. Stockhole. 1930. 被引量:1
  • 8Feller W. An Introduction to Probability Theory and Its Applications[M]. 2nd Editon. New York: Wiley, 1971. 被引量:1
  • 9Gerber H U. An Introduction to Mathematical Risk Theory[M]. S. S. Huebner Foundation for Insurance Education. Philadelphia: University of Pennsylvania, 1979. 被引量:1
  • 10Embrechts P, Klfippelberg C, Mikosch T. Modelling Extremal Events for Insurance and Finance[M]. Berlin: Springer, 1997. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部