期刊文献+

近代前期中国传统史学的嬗变

Evolution of Traditional Chinese History Study in Early Modern Times
下载PDF
导出
摘要 自近代以来,中国社会发生了急剧的变革,与之相适应中国传统史学在其观念和内容方面也发生了深刻的变化,主要反映在传统史学中经世致用思潮的再度崛起、边疆史地研究开始兴起、外国史著编译掀起热潮等三个方面。上述三个方面为传统史学注入了新的活力和内容,最终构成了近代史学的主要内容和特色。 In the modern times, the Chinese society had radical transformations. Adapting to it, the traditional Chinese history study also had profound changes in its ideas and contents. The changes mainly include: rising once again of pragmatism ideology in traditional history study, emerging of border area history research, and translation surge of foreign poured new vigor and content into the traditional history stu history books. The above three aspects dy, and finally constituted the main content and characteristics of modern history study.
出处 《石家庄铁道学院学报(社会科学版)》 2008年第1期52-55,共4页
关键词 中国传统史学 经世致用 边疆史地 外国史译著 traditional Chinese history study pragmatism ideology border area history research,translation of foreign history books
  • 相关文献

参考文献6

二级参考文献19

  • 1王首绪,李凤求,曾续璋,张立华.基于模糊类比法的公路工程合理造价的评估方法研究[J].中南公路工程,2005,30(1):125-129. 被引量:11
  • 2蔚承建,王文涛,苏振民.基于神经网络的建筑工程造价估计[J].南京建筑工程学院学报,1995(4):71-75. 被引量:18
  • 3Richard P. Lippmann. An introduction to computing with neural nets[J]. IEEE ASSP,1987(4):4-22. 被引量:1
  • 4Sollich P,Krogh A.Learning with Ensembles:How Over-Fitting Can Be Useful.In:Touretzky D,Mozer M,Hasselmo Meds[J].Advances in Neural Information Processing Systems(Volume 8),Cambridge,MA:MIT Press,1996,190-196. 被引量:1
  • 5Perrone MP,Coopler L N,When Networks Disagree:Ensemble Method for Neural etworks[R].In:Mammone R J ed.Artificial Neural Networks for Speech and Vision,London:Chapman-Hall,1993,126-142. 被引量:1
  • 6Opitz D,Shavlik J.Actively Searching for An Effective Neural network Ensemble[J].Connection Science,1996, 8(3-4):337-353. 被引量:1
  • 7Schapire R E.The Strength of Weak Learnabiliyt[J].Machine Learning,1990,5(2):197-227. 被引量:1
  • 8Breiman L.Bagging Predictors[J].Machine Learning,1996,24(2):123-140. 被引量:1
  • 9MartinTHagan 戴葵译.Neural Network Design[M].北京:机械工业出版社,2002.227. 被引量:14
  • 10David Hard,Heikki Mannila,Padhraic Smyth.Principles of Data Mining[M].北京:机械工业出版社,2003 被引量:1

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部