期刊文献+

应用协调单元计算三维对流问题 被引量:2

Numerical solution for three-dimensional advective problems using consistent hexahedral element method
下载PDF
导出
摘要 在数值求解三维对流问题时,关键是要寻找一种高精度的空间单元插值模式,使之既要保证解的稳定性,又要防止产生过大的数值伪扩散,因而成为数值求解的主要困难之一。文中探讨的任意空间六面体协调单元,能保证单元节点上的函数,一阶导数及其二、三阶混合导数是连续的。其例表明,本文提出的空间协调单元数值计算方法,具有同时满足稳定性好和数值伪扩散低的优点,不但较常用的非协调单元线性插值方法,而且比拟协调单元插值方法,均有效地提高了三维对流数值求解的精度。 A consistent hexahedra1 element method for three-dimensional advective problems is presented in this paper. The flow domain is discretized into arbitrary hexahedral elements. A third-order polynomial based on three-dimensional Cartesian coordinates (x, y, z) is adoped as the element interpolating function to make sure that first derivatives and second and third mixed derivatives of the variable functions over the entire domain are continuous. Results from calculations of two examples show that the consistent hexahedral element method has not only of good numerical stability but also of low damping. It is a significant improvement on the precision of numerical solution for three-dimensional advective problems over the non-consistence linear methods and quasi-consistence tetrahedral element method.
出处 《水利水运科学研究》 CSCD 1997年第2期114-124,共11页
基金 国家自然科学基金!59579009
关键词 协调单元 数值计算 三维对流问题 consistent hexahedral element, numerical stability, numerical damping, numerical calculation method, three-dimensional advective problem
  • 相关文献

参考文献1

二级参考文献1

共引文献11

同被引文献7

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部