期刊文献+

一类广义多值向量变分不等式 被引量:1

A Generalized Vector Inequality for Multi-valued Mappings
下载PDF
导出
摘要 研究了Hausdorff拓扑向量空间中一类广义多值向量变分不等式问题(GMVVIP),把定义在凸集上的GMVVIP部分地推广到了非凸集并运用KKM定理得到了这类GMVVIP解的存在性定理. A class of generalized multi-valued vector variational inequality problem ( in short GMVVIP) is studied in Hausdorff topological vector space. The GMVVIP defined on convex sets is generalized to nonconvex sets partially. Existence theorems of the GMVVIP are proved by using KKM theorem.
出处 《内江师范学院学报》 2008年第2期15-17,共3页 Journal of Neijiang Normal University
关键词 向量变分不等式 多值映象 KKM定理 vector variational inequality multi-valued mappings KKM theorem
  • 相关文献

参考文献11

  • 1[1]Giannessi F.Theorems of alteratice,quadratic programs and complementary problems[A].In:Cottle R W,Giannessi F,Lions J Leds.Variational inequality and complementary problems[M].New York:Wilew,1980. 被引量:1
  • 2[2]K.L.Lin,D.P.Yang and J.C.Yao,Generalized vector variational inequalities[J].Optim.Th.Appl.1997,92. 被引量:1
  • 3丁体明.集值映象的向量变分不等式和相补问题[J].应用数学,2004,17(4):612-616. 被引量:4
  • 4[4]B.S.Lee and S.J.Lee,Vector variational type inequality for set-valued mappings[J].Appl.Math.Lett,2002,13(3):57-62. 被引量:1
  • 5[5]M.A.Noor,Multivalued general equilibrium problem[J].Math.Anal.Appl.2003,283:140-149. 被引量:1
  • 6[6]A.H.Siddiqi,Q.H.Ausari and A.Khaliq,On vector variational inequalities[J].Optim.Th.Appl,1995,83(1):171-180. 被引量:1
  • 7[7]K.Fan,A generalization of Tychonoff' s fixed point theorem[J].Math.Ann,1961,142:305-310. 被引量:1
  • 8[8]A.H.Siddiqi,Q.H.Ausari and R.Ahmad,On vector variational inequalities[J].Indian J.Pure Appl.Math,1997,28(8):1009-1016. 被引量:1
  • 9[9]G.Y.Chen,Existence of solutions for a vector variational inequality:An extension of the Hartmann-stampacchia theorem[J].Optim.Th.Appl,1992,74:445-456. 被引量:1
  • 10[10]R.Ahmad and S.S.Irfan,On generalized nonlinear variational-like inequality problems[J].Appl.Math.Lettt,2006,19:294-297. 被引量:1

二级参考文献6

  • 1Lee B S,Lee S J. Vector variational type inequality for set-valued mappings[J]. Appl Math Lett , 2000,13(3) :57-62. 被引量:1
  • 2Fan K. A generalization of Tychonoff's fixed point theorem[J]. Math Ann , 1961,142:305-310. 被引量:1
  • 3Chen G Y. Existence of solutions for a vector variational inequality: An extension of the Hartmann-stampacchia theorem[J]. J Optim Theory Appl , 1992,74 : 445 - 456. 被引量:1
  • 4Siddiqi A H ,Ausari Q H ,Khaliq A. On vector variational inequalities[J]. J Optim Theory Appl , 1995,83(1) :171-180. 被引量:1
  • 5Siddiqi A H,Ausari Q H,Ahmad R. On vector variational inequalities[J]. Indian J Pure Appl , Math ,1997,28(8) :1009-1016. 被引量:1
  • 6Yang X Q. Vector complementarity and minimal element problems[J]. J Optim Theory Appl , 1993,77 :483-495. 被引量:1

共引文献3

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部