摘要
本文讨论由短弧测角资料,已知偏心率e的先验值时,初轨的寻优算法。把偏心率的先验值看作是对e的约束条件,再固定观测弧段两端点的观测量与作为约束条件,本文导出了一维(对M_0)非线性寻优算法;针对观测资料中可能存在异常值的情形,本文提出了一种初轨的稳健寻优算法。仿真结果表明,当e的先验值有足够高的精度时,能明显提高周期P的估计精度;稳健算法还可用作剔除观测资料的异常值。
Based on the angle data of short-arc and a priori value of the eccentricity,an optimizing algorithm to determine the initial orbit is investigated in this paper.Firstly,by treating the observations at both ends of observational arc and the eccentricity e as the restrained conditions,a non-linear optimizing algorithm with single parameter M0 is derived.Secondly,the robust algorithm is applied to the case with outliers embedded in observations.Numeric simulations show that if the priori value of the eccentricity is fairly accurate,the period of orbit can be determined with a high accuracy.And this robust algorithm can also be used to pick out the outliers in observation al data.
基金
国家自然科学基金
关键词
初轨
寻优算法
稳健算法
观测数据
initial orbit,optimizing algorithm,robust algorithm