摘要
利用函数的泰勒展开研究函数奇点问题是函数解析开拓理论研究的重要课题。文章基于原始文献,深入探讨了波莱尔在函数奇点研究方面的有关工作,特别是对"函数奇点乘积的阿达玛定理"和"泰勒展开一般以收敛圆为割线"问题进行了深入研究,探讨其思想的演变过程及在当时的重要影响。该研究对客观评价波莱尔在函数奇点方面的工作有重要价值,对了解函数奇点理论的历史发展有重要意义。
It is important to study the function singularities by Taylor's development in the theory of analytic continuation. This paper analyzes E. Borel's work relative to the research on that "Hadamard theorem of the multiplication of function singularities" and "Taylor's series generelly considers its convergent circle as the cut secant". They are not studied in the history of mathematics at present. The paper discusses the background, the development of his idea and the influence of his theory on other mathematicians at that time.
出处
《自然科学史研究》
CSCD
北大核心
2008年第2期236-248,共13页
Studies in The History of Natural Sciences
基金
国家自然科学基金(项目编号:10471111)
天津师范大学博士基金(项目编号:52LX15)
关键词
波莱尔
泰勒展开
函数奇点
解析开拓
Emile Borel, Taylor's development, function singularities, analytic continuation