摘要
考虑二阶非线性中立型时滞微分方程(x(t)-p(t)x(t-τ))+″g(t,x(t-σ))=0其中,p∈L[0,+∞),,τσ∈(0,∞),g:[0,∞)×R→R是Corothedory函数.建立了方程与一个一阶非线性时滞微分不等式振动性之间的一个比较结果,推广和改进了文献中的相关结果.
Consider the second order nonlinear neutral differential equation(x(t)-p(t)x(t-τ)″+g(t,x(t-σ))=0Where p∈L[0,+∞),τ,σ∈(0,∞),g:[0,∞)×R→R is Corothedory function.A comparison result between the oscillation of a first order differential inequality and the second order equation is obtained,which extend and improve the correqponding results in the literature.
出处
《太原师范学院学报(自然科学版)》
2008年第1期50-52,共3页
Journal of Taiyuan Normal University:Natural Science Edition
基金
山西省自然科学基金(2007011001)
关键词
中立型时滞微分方程
时滞微分不等式
振动
neutral differential equation
delay differential inequality
oscillation