期刊文献+

二阶中立型微分方程振动性的一个比较结果

A Comparison Result on Oscillation of Second Order Neutral Differential Equations
下载PDF
导出
摘要 考虑二阶非线性中立型时滞微分方程(x(t)-p(t)x(t-τ))+″g(t,x(t-σ))=0其中,p∈L[0,+∞),,τσ∈(0,∞),g:[0,∞)×R→R是Corothedory函数.建立了方程与一个一阶非线性时滞微分不等式振动性之间的一个比较结果,推广和改进了文献中的相关结果. Consider the second order nonlinear neutral differential equation(x(t)-p(t)x(t-τ)″+g(t,x(t-σ))=0Where p∈L[0,+∞),τ,σ∈(0,∞),g:[0,∞)×R→R is Corothedory function.A comparison result between the oscillation of a first order differential inequality and the second order equation is obtained,which extend and improve the correqponding results in the literature.
出处 《太原师范学院学报(自然科学版)》 2008年第1期50-52,共3页 Journal of Taiyuan Normal University:Natural Science Edition
基金 山西省自然科学基金(2007011001)
关键词 中立型时滞微分方程 时滞微分不等式 振动 neutral differential equation delay differential inequality oscillation
  • 相关文献

参考文献8

二级参考文献13

  • 1郑祖庥.泛函微分方程理论[M].合肥:安徽教育出版社,1992.. 被引量:14
  • 2PENG Ming-shu,GE Wei-gao,HUANG Li-hong,XU Qian-li.A Correction on the Oscillatory Behavior of Solutions of Certain Second-order Nonlinear Differential Equations[J].Appl Math Comput,1999,104:207-215. 被引量:1
  • 3WONG P J Y.AGARWAL R P.Oscillatory Behavior of Solutions of Certain Second Order Nonlinear Differential Equa tions[J].J Math Anal Appl,1996,198:337-354. 被引量:1
  • 4PENG Min-shu,GE Wei-gao,WANG Zhui.Properties for Solutions of Nonlinear Functional Differential Euations[J].Acta Math Appl Sinica,2002,25:367-371. 被引量:1
  • 5LI Wan-tong.Oscillation of Certain Second Order Nonlinear Differential Euations[J].J Math Anal Appl,1998,217:1-14. 被引量:1
  • 6NORIO YOSHIDA.Nonlinear Oscillation of First Order Delay Differential Equations[J].Rocky Mountain Journal of Mathematics,1996.26:361-374. 被引量:1
  • 7GYORI I,LADAS G.Oscillation Theory of Delay Differential Euations[M].Clarendon Press Oxford,1991. 被引量:1
  • 8BOBISUD L E.Oscillation of Solutions Damped Nonlinear Differential Euations[J].SIAM J Math Anal,1970,18:601-606. 被引量:1
  • 9BAINOV D D,DIMITROVA M B,DISHLIEV A B. Oscillation of the Bounded Solutions of Impulsive Differential-difference Equations of Second Order[J]. Appl Math Comput,2000,114:61-68. 被引量:1
  • 10BEREZANSKY L,BRAVERMAN E. On Oscillation of a Second Order Impulsive Linear Delay Differential Equations[J].J Math Anal Appl,1999,233:276-300. 被引量:1

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部