期刊文献+

一类具临界指数椭圆方程的非平凡解存在性 被引量:2

Existence of Non-Trivial Solutions for a Class of Elliptic Equations with the Critical Sobolev Exponents
下载PDF
导出
摘要 当N 4时,Capozzi A(1985),Ambrosetti A(1986)给出了具临界指数2*的椭圆型方程-Δku+|u|2*-2u,inΩRN;u=0,onΩ(*)非平凡解的存在性结论,其中λk是算子-Δ的第k个特征值。然而N=3是问题(*)的临界维数,在适当添加一个次临界扰动项后,利用P.L.Lions集中紧性原理获得了一对非平凡解的存在性结论。 It is well known that Capozzi A( 1985 ) and Ambrosetti A(1986) have got existence theorems of the fol- lowing elliptic equation with critical Sobolev exponent if N ≥ 4,△Ku+|u|^2*-2u,inΩ∈R^N;u=O,on ЭΩ where λk is the kth eigen - value of - △. However,N = 3 is the critical dimension of the problem( * ). Adding a subcritical perturbation,the authors have given existence theorems by ways of the concentration - compactness principle of P. L. Lions.
机构地区 宜宾学院数学系
出处 《南昌大学学报(理科版)》 CAS 北大核心 2008年第1期28-33,37,共7页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(10571150)
关键词 DIRICHLET问题 临界指数 集中紧性原理 dirichlet problem critical sobolev exponent concentration - cmpactness principle
  • 相关文献

参考文献10

  • 1Capozzi A, Fortunato D, Palmieri G. An Existence Result for Nonlineas Elliptic Problems Involving Critical Sobolev Exponent[ J]. Ann Inst H Poincare, 1985(2) :463 -470. 被引量:1
  • 2Ambrosetti A,Struwe M. A Note on the Problem -△u = λu + u│u│^2*-2[J]. Manuse Math,1986,54:373 -379. 被引量:1
  • 3Jannelli E. The Role Played by Space Dimension in Elliptic Critical Problems [ J ]. J Differential Equations, 1999, 156:407 - 426. 被引量:1
  • 4Yinbing D. Existence of Multiple Positive Solutions for -△u=λu+uN+2√N-2+μf(x) [J]. Acta Mathematics Sinica, New (Series) , 1993,9 ( 3 ) :311 - 320 被引量:1
  • 5陆文端著..微分方程中的变分方法 修订版[M].北京:科学出版社,2003:391.
  • 6Chunlei T,Xingping W. Existence and Multiplicity of Solutions of Semilinear Elliptic Equations [ J]. J Math Anal Appl,2001,256 : 1 - 12. 被引量:1
  • 7Lions P L. The Concentration - Compactness Principle in the Calculus of Variations [ J ]. The Limit Case (Ⅰ), Revista Math Ibero,1985(1) :145 -201. 被引量:1
  • 8朱熹平.临界增长拟线性椭圆型方程的非平凡解[J].中国科学:A辑,1988,3:225-237. 被引量:12
  • 9Strauss W A. Existence of Solitary Waves in Higher Dimensions[ J]. Comm Math Phys, 1977,55 : 149 - 162. 被引量:1
  • 10Brezis H, Lieb E H. A Relation Between Pointwise Convergence of Functions and Convergence of Functionals [ J]. Proc Amer Math Soc, 1983,88:486 -490. 被引量:1

共引文献11

同被引文献1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部