期刊文献+

端元光谱自动提取的总体最小二乘迭代分解 被引量:7

Iterative Abstraction of Endmember Based on Total Least Square for Mixture Pixel Decomposition
下载PDF
导出
摘要 根据总体最小二乘(total least squares,TLS)模型理论,提出了一种影像端元光谱可受噪声污染的混合光谱线性扩展模型,并实现了该模型的端元光谱自动迭代提取以及混合像元的限定性分解。实验结果表明,扩展的混合像元分解模型明显优于传统的最小二乘分解模型,总体精度大约提高了10%~20%。 An extension linear spectral model based on total least square algorithm is proposed, and iteratively abstract the better endmembers and physically based constrained algorithm with this model are presented. The results show that the proposed model provides better accuracy than tradi- tional least square method, the total estimating precision improves by 10%-20%.
出处 《武汉大学学报(信息科学版)》 EI CSCD 北大核心 2008年第5期457-460,468,共5页 Geomatics and Information Science of Wuhan University
基金 国家科技部国际科技合作重点资助项目(2005DFA20420) 福州大学引进人才启动基金资助项目
关键词 总体最小二乘 混合像元 端元光谱 迭代分解 Abstracting Boolean functions Curve fitting Geodesy Least squares approximations
  • 相关文献

参考文献6

  • 1Heinz D, Chang C I. Fully Constrainted Least Squares Linear Mixture Aanlysis for Material Quantification in Hyperspetral Imagery [J]. IEEE Trans on Geosei and Remote Sens, 2001, 39(3) : 529-545 被引量:1
  • 2Gong P, Zhang A. Noise Effect on Linear Spectral Unmixing[J]. Geograph Inform Sci, 1999, 5(1) : 52-57 被引量:1
  • 3薛彬,赵葆常,杨建峰,吕群波.改进的线性混合模型用于高光谱分离实验模拟[J].光子学报,2004,33(6):689-692. 被引量:10
  • 4Sirkeci B, Brady D, Burman J. Restricted Total Least Square Solutions for Hyperspectral Imagery [C]. 2000 International Conference on Acoustics, Speech, and Signal Processing, USA, 2000 被引量:1
  • 5Golub G H, Van C F. An Analysis of the Total Least Squares Problem[J]. Siam J Numer Anal, 1980,17(6) : 883-893 被引量:1
  • 6Ren H, Du Qian, Jensen J Q. Constrained Weighted Least Squares Approaches for Target Detection and Classification in Hyperspectral Imagery [C]. IEEE International Geoscience and Remote Sensing Symposium, Toronto, Canada, 2002 被引量:1

二级参考文献5

  • 1[2]Mustard J F, Li Lin, He Guoqi.The Importance of Nonlinear Mixing Modeling for Analysis of Lunar Multispectral Data. Lunar and Planetary Science. 1997. XXVIII: 995~996 被引量:1
  • 2[3]Hu Y H, Lee H B, Scarpace F L.Optimal linear spectral unmixing.IEEE Transactions on Geoscience and Remote Sensing,1999,37(1):639~644 被引量:1
  • 3[4]Abatzoglou T J,Mendel J M.Constrained total least squares.IEEE International Conf on Acoustics, Speech & Signal Processing, Dallas, 1987.1485~1488 被引量:1
  • 4[6]Herzog S G,Mustard J F.Reflectance Spectra of Five-Component Mineral Mixtures: Implications for Mixture Modeling. Lunar and Planetary Science. 1996. XXVII: 535~538 被引量:1
  • 5[7]Tchistiakov V,Ruckebusch C. Neural network modelling for very small spectral data sets: reduction of the spectra and hierarchical approach.Chemometrics and Intelligent Laboratory Systems,2000,54(1):93~106 被引量:1

共引文献9

同被引文献90

引证文献7

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部