期刊文献+

An Improved Differential Evolution for Optimization of Chemical Process 被引量:11

An Improved Differential Evolution for Optimization of Chemical Process
下载PDF
导出
摘要 Differential evolution (DE) is an evolutionary optimization method, which has been successfully used in many practical cases. However, DE involves large computation time, especially, when used to optimize the compurationally expensive objective function. To overcome this .difficulty, the concept of immunity based on vaccination is used to help proliferate excellent schemata and to restrain the degenerate phenomenon. To improve the effective- ness of vaccines, a new vaccine autonomous obtaining method, and a method of deciding the probability of vacci- nation are proposed. In addition, a method for modifying the search space dynamically is proposed to enhance the possibility of converging to the true global optimum. Experiments showed that the improved DE performs better than the classical DE significantly. 微分进化(DE ) 是一个进化优化方法,它成功地在许多实际盒子中被使用了。然而,特别,当过去常优化计算联盟者时, DE 包含大计算时间昂贵的客观功能。克服这个困难,免疫的概念基于种痘被用来帮助增殖优秀模式并且制止退化现象。为了改进决定的疫苗,一个新疫苗的自治获得方法,和一个方法的有效性,种痘的概率被建议。另外,为动态地修改搜索空间的一个方法被建议提高收敛到真全球最佳的可能性。实验证明改进 DE 显著地比古典 DE 更好表现。
出处 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2008年第2期228-234,共7页 中国化学工程学报(英文版)
基金 Supported by the National Natural Science Foundation of China (60736021), the National High Technology Research and Development Program of China (2006AA04Z184, 2007AA041406), and the Key Technologies R&D Program of Zhejiang Province (2006C 11066, 2006C31051).
关键词 differential evolution VACCINE CONVERGENCE search space OPTIMIZATION 差分进化算法 化工过程 优化 疫苗
  • 相关文献

参考文献4

二级参考文献25

  • 1郑日荣,毛宗源,罗欣贤.基于欧氏距离和精英交叉的免疫算法研究[J].控制与决策,2005,20(2):161-164. 被引量:31
  • 2Castro L N de, Femando J, Zuben V. Learning and Optimization Using the Clonal Selection Principle [J].IEEE Trans on Evolutionary Computation, 2002,6 (:3) :239-251. 被引量:1
  • 3Gonzalez F, Dasgupta D. Anomaly Detection Using Real-valued Negative Selection [J]. Genetic Programming and Evolvable Machines, 2003, 4 (4) :383-403. 被引量:1
  • 4Karanikas C, Proios G. A Nonlinear Discrete Transform for Pattern Recognition of Discrete Chaotic System [J]. Chaos, Solition and Fractals, 2003,5 (17) :195-201. 被引量:1
  • 5Hong J, Lim W, Lee S. An Efficient Production Algorithm for Multihead Surface Mounting Machines Using Biological Immune Algorithm[J]. International J of Fuzzy Systems, 2000,2 (1) : 45-53. 被引量:1
  • 6Sung-Ling Chen, Ming-Tong Tsay, Hong-Jey Gow.Scheduling of Cogeneration Plants Considering Electricity Wheeling Using Enhanced Immune Algorithm [J]. Electrical Power and Energy System,2005,27(1) :31-38. 被引量:1
  • 7N. Kubota, K. Shimojima, T. Fukuda. The role of virus infection in virus-evolutionary genetic algorithm envolutonary computation. In: Proc. IEEE Int'l Conf. on Evolutionary Computation. Nagoya, Japan: IEEE Press, 1996. 182~187. 被引量:1
  • 8S.W. Mahfoud. Niche methods for genetic algorithms: [Ph. D.dissertation]. Urbana Champaign: University of Illinois, 1995. 被引量:1
  • 9J.H. Holland. Adaptation in Natural and Artificial System. Ann Arbor, MI: University of Michigan Press, 1975 被引量:1
  • 10D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. NewYork: Addison-Wesley, 1989. 被引量:1

共引文献58

同被引文献152

引证文献11

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部