期刊文献+

基于区域伸缩的空间关系表示 被引量:3

Representation of Spatial Relations Based on Region Extension and Shrinking Calculus
下载PDF
导出
摘要 区域连接演算(RCC)是定性空间推理的重要基础理论之一。但由于缺乏必要的度量,RCC只是粗略地描述空间拓扑关系而难以对其更准确地描述,也难以利用RCC描述除拓扑关系之外的其它空间关系,如距离、方向等。本文在RCC理论的基础上,提出了区域伸缩演算(RESC)。RESC增加了一个全等CG的原始空间关系,引入了两个新颖的对区域的演算函数,即区域延伸和区域收缩,从而给出了一种以区域为单位的形式化的度量方法。利用RESC,不仅可以扩展RCC-8拓扑关系,而且能以灵活多样的粒度来描述区域间的距离关系、方向关系、位置关系以及运动关系。RESC增强了RCC的空间关系表示能力,拓展了RCC理论的适用范围。 Region connection calculus (RCC) is one of the important fundamental theories in qualitative spatial reasoning (QSR). Lacking necessary metrization, RCC only describe spatial topological relations roughly without further accurateness, and it is also not easy to describe spatial relations such as distance, direction and so on, with the exclusion of topological relation. Based on the RCC theory, Region Extension and Shrinking Calculus (RESC) is proposed. As for RESC, the congruence CG as a primitive spatial relation is added and two new functions acting on region, Region Extension and Region Shrinking are introduced, consequently a formalized metrization method that takes region as a basic unit is put forward. RESC not only expands the topological relations, but also describes multiple spatial relations including distances, directions, positions and locomotion at flexible and various granularities. RESC improves the expressive power of RCC and extends the applicable range of RCC
出处 《计算机科学》 CSCD 北大核心 2008年第4期211-215,共5页 Computer Science
基金 国家自然科学基金项目(60273040) 江苏省高校自然科学研究基金计划项目(03kjd520175) 江苏省社会发展基金项目(BS2001046)
关键词 定性空间表示 区域连接演算 区域伸缩 度量 Spatial relations representation, Region connection calculus, Region extension and shrinking, Metrization
  • 相关文献

参考文献13

  • 1Cohn A G, Hazarika S M. Qualitative spatial representation and reasoning: An overview. Fundamental Informatics, 2001, 46 (1- 2) : 1-29 被引量:1
  • 2Andrew U F. Qualitative spatial reasoning: cardinal directions as an example. International Journal Geographical Information Systems, 1996, 10(3): 269-290 被引量:1
  • 3Eliseo C, Paolino F, Daniel H. Qualitative representation of positional information. Artificial Intelligence, 1997, 95(2): 317-356 被引量:1
  • 4Randell D, Cui Z, Cohn A G. A spatial logic based on regions and connection. In: Nebel B, Rich C, Swartout W,eds. Proc. of the Knowledge Representation and Reasoning. San Mateo: Morgan Kauimann, 1992. 165-176 被引量:1
  • 5Cohn A G, Bennett B, Gooday J, et al. Qualitative spatial representation and reasoning with the region connection calculus. GeoInformatica, 1997, 1(1): 1-44 被引量:1
  • 6Cohn A G, Varzi A. Mereotopological Connection. Journal of Philosophical Logic, 20032,32:357-399 被引量:1
  • 7王生生,刘大有.定性空间推理中区域连接演算的多维扩展[J].计算机研究与发展,2004,41(11):1954-1958. 被引量:6
  • 8Shariff A R, Egenhofer M, Mark D. Natural-Language spatial relations between linear and areal Objects: the topology and metric of english-language terms. International Journal of Geographical Information Science, 1998, 12(3): 215-246 被引量:1
  • 9邓敏,李成名,刘文宝.利用拓扑和度量相结合的方法描述面目标间的空间关系[J].测绘学报,2002,31(2):164-169. 被引量:33
  • 10Cristani M. The Complexity of Reasoning About Spatial Congruence. Journal of Artificial Intelligence Research, 1999, 11:361-390 被引量:1

二级参考文献8

共引文献37

同被引文献18

  • 1杜世宏,王桥.不确定性空间关系[J].中国图象图形学报(A辑),2004,9(5):539-546. 被引量:9
  • 2Cohn A G,Gotts N M. The ‘Egg-yolk' Representation of Regions with Indeterminate Boundaries[C]//Proceeding of GISDATA Specialist Meeting on Geographic Objects with Indeterminate Boundaries. London:Taylor and Francis, 1996:171-187. 被引量:1
  • 3Clementini E, DiFelice P. Approximate Topological Relations [J]. International Journal of Approximate Reasoning, 1997, 16 (2) : 173-204. 被引量:1
  • 4Schoekaert S, Cornelis C, Cock M D, et al. Fuzzy Spatial Relations Between Vague Regions[C]// 3rd IEEE Conference on Intelligent Systems. Berlin: Springer Verlag, 2006 : 221-226. 被引量:1
  • 5Schoekaert S, Cock M D, Cornelis C, et al. Fuzzy Region Connection Calculus:Representing Vague Topological Information[J].International Journal of Approximate Reasoning, 2008,48 ( 1 ) :314-331. 被引量:1
  • 6Egenhofer M, Clementini E, Felice P D. Topological Relations between Regions with Holes[J]. International Journal of Geographical Information Systems, 1994,8(2) : 129-144. 被引量:1
  • 7Gau W L, Buehrer D J. Vague Sets[J]. IEEE Transactions on Systems, Man and Cybernetics(Part B), 1993,23(2) : 610 -614. 被引量:1
  • 8Cohn A G, Hazarika S M. Qualitative Spatial Representation and Reasoning: An Overview[J]. Fundamental Informatics, 2001, 46 (1/2): 1-29. 被引量:1
  • 9Randell D, Cui Zhan, Cohn A G. A Spatial Logic Based on Regions and Connection[C]//Proceedings of the 3rd International Conference on Knowledge Representation and Reasoning. San Francisco, USA: Morgan Kaufmann Publishers, 1992: 165-176. 被引量:1
  • 10Cohn A G, Bennett B, Gooday J, et al. Qualitative Spatial Representation and Reasoning with the Region Connection Calculus[J]. Geolnformatica, 1997, 1(1): 1-44. 被引量:1

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部