摘要
BACKGROUND: The effects of N-methyl-D-aspartic acid (NMDA) receptor antagonist on neurodegeneration in the immature brain following traumatic brain injury (TBI) are still widely unknown. OBJECTIVE: To study the effects of dizocipine maleate (MK-801), a non-competitive NMDA receptor antagonist, on mitochondrial ultramicrostructure of neurons in the ipsilateral cingulate cortex and hippocampus after TBI in neonatal rats, and to analyze the optimal time interval of MK-801 administration (1 mg/kg). DESIGN: Completely randomized controlled study. SETTING: Shanghai Jiao Tong University. MATERIALS: Eight 7-day-old neonatal SD rats, irrespective of gender, were provided by Experimental Animal Center, Medical College of Fudan University. The experiment was approved by a local ethics committee. MK-801 was provided by Sigma. A CM-120 transmission electron microscope (Philips, Holland) was used for tissue analysis. METHODS: This study was performed at the Departments of Anatomy, Neuromorphology, and Biophysics, Medical College of Shanghai, Jiaotong University, between October 2006 and January 2007. Focal models of contusion and laceration of brain were established by the free-falling impact method. Eight rats were randomly divided into a normal control group (n = 2 ) and a MK-801 group (n = 6). Rats in the normal control group did not receive model establishment and administration, and they were only analyzed by an electron microscope. In the MK-801 group, the cingulate cortex was damaged using a contusion device. MK-801 (1 mg/kg) was intraperitoneally injected 30 minutes before lesion, immediately after lesion, and 30 minutes after lesion (n = 2 for each time point).MAIN OUTCOME MEASURES: The cingulate cortex and hippocampal tissues from the injured side were removed 24 hours after lesion and routinely processed for analysis of neuronal ultramicrostructure using transmission electron microscopy. RESULTS: Differential therapeutic effects of MK-801 (1 mg/kg) at distinct
BACKGROUND: The effects of N-methyl-D-aspartic acid (NMDA) receptor antagonist on neurodegeneration in the immature brain following traumatic brain injury (TBI) are still widely unknown. OBJECTIVE: To study the effects of dizocipine maleate (MK-801), a non-competitive NMDA receptor antagonist, on mitochondrial ultramicrostructure of neurons in the ipsilateral cingulate cortex and hippocampus after TBI in neonatal rats, and to analyze the optimal time interval of MK-801 administration (1 mg/kg). DESIGN: Completely randomized controlled study. SETTING: Shanghai Jiao Tong University. MATERIALS: Eight 7-day-old neonatal SD rats, irrespective of gender, were provided by Experimental Animal Center, Medical College of Fudan University. The experiment was approved by a local ethics committee. MK-801 was provided by Sigma. A CM-120 transmission electron microscope (Philips, Holland) was used for tissue analysis. METHODS: This study was performed at the Departments of Anatomy, Neuromorphology, and Biophysics, Medical College of Shanghai, Jiaotong University, between October 2006 and January 2007. Focal models of contusion and laceration of brain were established by the free-falling impact method. Eight rats were randomly divided into a normal control group (n = 2 ) and a MK-801 group (n = 6). Rats in the normal control group did not receive model establishment and administration, and they were only analyzed by an electron microscope. In the MK-801 group, the cingulate cortex was damaged using a contusion device. MK-801 (1 mg/kg) was intraperitoneally injected 30 minutes before lesion, immediately after lesion, and 30 minutes after lesion (n = 2 for each time point).MAIN OUTCOME MEASURES: The cingulate cortex and hippocampal tissues from the injured side were removed 24 hours after lesion and routinely processed for analysis of neuronal ultramicrostructure using transmission electron microscopy. RESULTS: Differential therapeutic effects of MK-801 (1 mg/kg) at distinct
基金
the Fourth Key Disciplines Foundation of Shanghai Education Commission, No.2004JY04