期刊文献+

基于自举算法和支持向量机的人脸检测系统

Face detecting system based on AdaBoost algorithm and Support Vector Machine
下载PDF
导出
摘要 针对复杂背景下的灰度图像人脸检测存在计算量大且负检率高等问题,提出了一种有较好可用性的层级递进的人脸检测系统。系统第一部分采用扩展的Haar型特征并结合自举算法,使其分类性能要优于原始的Haar型特征。在系统的第二部分,采用从粗到细的视觉处理逻辑对图像采样,并提出了正面直立人脸的像素值的置信度的概念,且以支持向量机作为学习算法,使系统具有良好的检测性能。该系统在实际应用图像的测试中取得良好效果,具有可用性。 For there were some tough problems in face detection under various background in gray level images,like too time-consuming and high false positive rate,this paper developed an applicable cascade face detecting system.First part of the system adopted extended Haar-like features combined with AdaBoost algorithm,which made performance of classifying better than using original Haar-like features.Second part of the system adopted vision logic,a strategy from general to detail to sample images,and introduced the conception of front-right face image pixel confidence,and took Support Vector Machine as learnnig algorithm.This part ensured the good accuracy of the detection.This system perfomed well on real image test.This was an applicable face detecting system.
作者 胡凯 费耀平
出处 《计算机工程与应用》 CSCD 北大核心 2008年第12期199-203,共5页 Computer Engineering and Applications
关键词 人脸检测 Haar型特征 自举算法 支持向量机 像素置信度 face detection Haar-like feature AdaBoost Support Vector Machine(SVM) pixel confidence
  • 相关文献

参考文献9

  • 1Roth D,Yang M,Ahuja N.A snowbased face detection[J].Neural Information Processing,2000,12. 被引量:1
  • 2Schneiderman H,Kanade T.A statistical method for 3D object detection applied to faces and cars[C]//Proc IEEE Computer Soc Conf on Computer Vision and Pattern Recognition,2000. 被引量:1
  • 3Mophaddom B,Pentland A D.Probabilistic visual learninng for object representation[J].IEEE Trans PAMI, 1997,19(7) :696-710. 被引量:1
  • 4Rowly H A,Baluja S,Kanade T.Neural network-based face detection[J].IEEE Trans PAMI, 1998,20( 1 ) : 23-38: 被引量:1
  • 5Viola P,Jones M J.Rapid object detection using a boosted cascade of simple features[C]//Proc of International Conference on Computer Vision and Pattern Recognition, 2001,1 : 511-518. 被引量:1
  • 6Mohan A,Papageorgiou C,Poggio T.Example-based object detection in images by components[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(4):349-361. 被引量:1
  • 7Papageorgiou C,Oren M,Poggio T.A general frame-work for object detection[C]//International Conference on Computer Vision,1998. 被引量:1
  • 8Lienhart R,Maydt J.An extended set of Haar-like features for rapid object detection[C]//Proc of the IEEE International Conference on Image Processing, 2002,1 : 900-903. 被引量:1
  • 9Schapire R E,Freund V,Bartlett P.Boosting he margin:a new explanation for the effectiveness of voting methods[C]//Proceedings of the Fourteenth International Conference on Machine Learning,1997. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部