摘要
The Ca+CH3I→CaI+CH3 reaction system has been studied with the quasi-classical trajectory method on the extended Lond-Eyring-Polanyi-Sato(LEPS) potential energy surface. At collision energy Ecol=10.78 kJ/mol, the calculated results show that the CaI vibrational population peaks are located at v=2. The calculated cross section decreases slowly with the collision energy increasing. The angle product distributions tend toward backward scattering. The calculated (P2(J^1·K)) values deviate slightly from-0.5 and decrease with increasing collision energy. The Quasiclassical trajectory calculation(QCT) results are in reasonable agreement with experimental data. Moreover, the dynamics of the reaction has been discussed.
The Ca+CH3I→CaI+CH3 reaction system has been studied with the quasi-classical trajectory method on the extended Lond-Eyring-Polanyi-Sato(LEPS) potential energy surface. At collision energy Ecol=10.78 kJ/mol, the calculated results show that the CaI vibrational population peaks are located at v=2. The calculated cross section decreases slowly with the collision energy increasing. The angle product distributions tend toward backward scattering. The calculated (P2(J^1·K)) values deviate slightly from-0.5 and decrease with increasing collision energy. The Quasiclassical trajectory calculation(QCT) results are in reasonable agreement with experimental data. Moreover, the dynamics of the reaction has been discussed.
基金
Supported by the National Natural Science Foundation of China(No10604012)