摘要
马欣荣建立了最广泛的一对矩阵反演(f,g)-反演,它取决于所给的一对函数f(x,y)、g(x,y),对(?)a,b,c,是否满足方程g(a,b)f(x,c)-g(a,c)f(x,b)+g(b,c)f(x,a)=0,并给出了该反演的算子法证明.文章就(f,g)-反演给出了较简单、易于理解的数学归纳法证明.
Ma Xin-rong has set up the most extensive matrix inversion(f, g)- inversion. A characterization of the two functionsf(x,y) and g(x,y) in the (f, g) inversion is g(a,b)f(x,c)-g(a,c)f(x,b)+g(b,c)f(x,a) = 0 for Va, b, c. The main purpose of this paper is to prove the (f, g)- inversion by mathematical induction, which is more comprehensible than Ma's operator method.
出处
《南通大学学报(自然科学版)》
CAS
2008年第1期88-90,共3页
Journal of Nantong University(Natural Science Edition)
关键词
矩阵反演
(f
g)-反演
数学归纳法
matrix inversion
(f, g)-inversion
mathematical induetion