期刊文献+

蚁群优化属性约简算法 被引量:9

Ant Colony Optimization Approach to Attribute Reduction Problem
下载PDF
导出
摘要 为了获得决策表属性的最小约简,将信息论角度定义的属性重要性作为启发信息引入蚁群算法,提出了一种蚁群优化属性约简算法.该算法将属性核直接引入到蚂蚁构造的每一个解中,降低了问题规模,新定义的状态转移规则和信息素更新规则体现了约简中属性间的无序性特点,有利于在优解邻域内搜索.通过9个典型实例对算法进行了验证,结果与现有算法相比能够更容易找到最小约简,所需时间较短. In order to obtain the minimal reduction of decision table attributes, an attribute reduction algorithm is proposed based on ant colony optimization. The significance of attributes defined from the viewpoint of information theory is used as the heuristic information. The algorithm directly imports the core into each solution constructed by ants and reduces the problem scale. The new state transition rule and pheromone updating rule reflects the orderless characteristic among attributes, and benefits the search in the neighborhood of good solutions. The algorithm is verified on nine typical instances. Experimental results show that, compared with the existing algorithms, the proposed algorithm can find the minimal reduction more easily with less time.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2008年第4期440-444,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(60475023) 教育部高等学校博士学科点专项科研基金资助项目(20050698023)
关键词 蚁群优化 决策表 属性约简 ant colony optimization decision table attribute reduction
  • 相关文献

参考文献12

  • 1PAWLAK Z. Rough sets[J]. International Journal of Computer and Information Science, 1982, 11 (5) : 341- 356. 被引量:1
  • 2PAWLAK Z. Rough set approach to multi-attribute decision analysis [J]. European Journal of Operational Research, 1994, 12(72):443-459. 被引量:1
  • 3WONG S K M, ZIARKO W. On optional decision rules in decision tables [J]. Bulletin of Polish Academy of Sciences, 1985, 33(11):693-696. 被引量:1
  • 4DORIGO M, MANIEZZO V, COLORNI A. Ant system: optimization by a colony of cooperating agents [J]. IEEE Trans on Systems, Man and Cybernetics: Part B, 1996, 26(1):29-41. 被引量:1
  • 5DORIGO M, GAMBARDELLA L M, Ant colony system: A cooperative learning approach to the traveling salesman problem [J]. IEEE Trans on Evolutionary Computation, 1997, 1(1):53-66. 被引量:1
  • 6STUTZLE T, HOOS H H. Max-min ant system[J]. Future Generation Computer Systems, 2000, 16 (8): 889-914. 被引量:1
  • 7JENSEN R, SHEN Q. Finding rough set reducts with ant colony optimization [C]//Proceeding of the 2003 UK Workshop on Computational Intelligence. Bristol,UK: University of Bristol, 2003:15-22. 被引量:1
  • 8王俊峰,朱庆保.基于蚁群算法的知识约简[J].南京师范大学学报(工程技术版),2005,5(2):50-53. 被引量:4
  • 9周江卫,冯博琴,刘洋.一种新的快速求核算法[J].西安交通大学学报,2007,41(6):688-691. 被引量:10
  • 10杨明.一种基于改进差别矩阵的核增量式更新算法[J].计算机学报,2006,29(3):407-413. 被引量:76

二级参考文献25

共引文献654

同被引文献76

引证文献9

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部