期刊文献+

一种用于抗噪语音识别的动态参数补偿新方法

A novel dynamic parameter compensation method for noisy speech recognition
下载PDF
导出
摘要 模型补偿技术已成功应用到噪声环境下的语音识别任务中。流行的模型补偿技术如Log-Add和Log-Normal PMC(并行模型合并)方法对动态特征参数通常只能给出近似的补偿。因此他们的识别率在较低的信噪比条件下变得很低。本文利用静态特征的导函数推导出了一种新的动态模型参数补偿方法。新的方法可以同任何已知的静态模型补偿算法结合产生出新的用于识别的噪声语音模型。实验证明这一新算法的应用,使其识别率比仅使用原有的模型补偿算法有较为明显的提高,并且新算法的复杂度较原有的模型补偿算法只有轻微的增加。 Model-based compensation techniques have been successfully used for speech recognition in noisy environments. Popular model-based compensation methods such as the Log-Add and Log-Normal PMC (Parallel Model Combination) generally use approximate compensation for dynamic parameters. Hence their recognition accuracy is degraded at low signal-to-noise ratios. A Dynamic Parameter Compensation Method (DPCM) is derived by means of the time derivatives of static features in this paper. The new compensated dynamic model together with any known compensated static model forms a new corrupted speech recognition model. Experimental results show that the recognition model using this DPCM scheme gives recognition accuracy better than the original model compensation method for different additive noises at the expense of slight increase in computational complexity.
作者 宁更新 韦岗
出处 《电路与系统学报》 CSCD 北大核心 2008年第2期14-19,共6页 Journal of Circuits and Systems
基金 国家自然科学基金资助项目(60502041) 广东省自然科学基金博士启动资助课题项目(07300583)
关键词 鲁棒语音识别 模型补偿 动态参数补偿 robust speech recognition model compensation dynamic parameter compensation
  • 相关文献

参考文献11

二级参考文献42

  • 1胡广书.数字信号处理-理论、算法与实现[M].北京:清华大学出版社,2001.. 被引量:12
  • 2Hynek Hermansky, Nelson Morgan, Aruna Bayya, Phil Kohn. RASTA-PLP speech analysis technique. Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing, 1992, 1: 121-124. 被引量:1
  • 3Kuo-Hwei You, Hsiao-Chuan Wang. Robust features for noisy speech recognition based on temporal trajectory filtering of short-time autocorrelation sequences. Speech Communication, 1999, 28: 13-24. 被引量:1
  • 4J.EXu, G.Wei. Noise-robust speech recognition based on difference of power spectrum. IEE Electronics Letters,2000,36 ( 14): 1247-1248. 被引量:1
  • 5M.J.F.Crales. Predictive model-based compensation schemes for robust speech recognition. Speech Communication, 1998, 25: 49-74. 被引量:1
  • 6Ivandro Sanches. Noise-compensated Hidden Markov Models. IEEE. Transations on Speech and Audio Processing, 2000, 8 (5): 533-540. 被引量:1
  • 7A.Varga, H.J.Msteeneken. Assessment for automatic speech recognition: II.NOISE-92: a database an experiment to study the effect of additive noise on speech recognition systems. Speech Communication, 1993, 12:247-251. 被引量:1
  • 8S.Young, etc. The HTK Book (for HTK vention 3.0) .Cambridge University Tech Services Ltd, 2000. 被引量:1
  • 9Ivandro Sanches. Noise-compensated hidden Markov models. IEEE Trans on Speech and Audio Processing, 2000;8(5): 533-540. 被引量:1
  • 10Hwang T H, Lee L M, Wang H C. Cepstral behavior due to additive noise and a compensation scheme for noisy speech recognition. IEEProc of Vis Image Signal Process, 1998;145(5): 316-321. 被引量:1

共引文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部