期刊文献+

MIMO系统中改进的粒子滤波解调算法 被引量:1

Improved particle filters for MIMO demodulation
下载PDF
导出
摘要 粒子滤波算法(PF)中,序列重要性采样引起采样点贫化,进一步经过重采样后造成分集度损失.由于调制星座上信号点的有限离散性,当PF应用于多输入多输出(MIMO)系统解调时,分集度损失将引起解调性能下降.因此,提出首先采用噪声增强的方法来增加重要性采样得到的不同粒子数,从而减缓采样点贫化.然后引入部分确定性重分配结构(PDR)取代重采样过程,以提高具有小重要性权值的粒子被保存的概率,降低分集度损失.分析和仿真结果表明,提出的噪声增强和PDR方法能够显著改善MIMO系统的比特错误性能. In particle filters (PF), sequential importance sampling will result in sample impoverishment and further the loss of diversity after resampling. Note that the signal points of modulation constellation are discrete and finite. The loss of diversity will result in performance degradation when PF is utilized to demodulate the multi-input multi-output (MIMO) systems. Therefore, an artificially noise enhancement (ANE) method is first introduced in importance sampling to increase the number of different particles, which will alleviate the sample impoverishment. Second, the partially deterministic reallocation (PDR) scheme is introduced to replace the resampling. The PDR scheme can increase the surviving probability of particles with small importance weights, thereby decreasing the loss of diversity. Analyses and simulation results show that the proposed method can significantly improve the bit error performance of MIMO systems.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2008年第2期237-241,253,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(60472098 60502046) 重庆市/信息产业部移动通信技术重点实验室开放课题基金
关键词 多输入多输出 粒子滤波 采样点贫化 分集度损失 multi-input multi-output particle filters sample impoverishment loss of diversity
  • 相关文献

参考文献13

  • 1Doucet A, De Freitas J F G, Gordon N. Sequential Monte Carlo Methods in Practice[M]. New York: Springer-Verlag, 2001. 被引量:1
  • 2Doucet A, Godsill S, Andrieu C. On Sequential Monte Carlo Sampling Methods for Bayesian Filtering[J]. Statist Comput, 2000, 10(3): 197-208. 被引量:1
  • 3Djuric P M, Kotecha J H, Zhang J, et al. Particle Filtering[J]. IEEE Signal Processing Magazine, 2003, 20(5): 19-38. 被引量:1
  • 4Doucet A, Wang X. Monte Carlo Methods for Signal Processing[J]. IEEE Signal Processing Magazine, 2005, 22(6): 152-170. 被引量:1
  • 5李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 6Huang Y, Zheng J, Djuric P M. Bayesian Detection for BLAST[J]. IEEE Trans on Signal Processing, 2005, 53(3): 1 086-1 096. 被引量:1
  • 7Dong B, Wang X, Doucet A. A New Class of Soft MIMO Demodulation Algorithms [J]. IEEE Trans on Signal Processing, 2003, 51(11) : 2 752-2 763. 被引量:1
  • 8Liu J, Chen R. Sequential Monte Carlo Methods for Dynamic Systems[J]. J Amer Statist Assoc, 1998, 93 (5): 1 032-1 044. 被引量:1
  • 9Chen R, Liu J. Mixture Kalman Filter[J]. J Amer Statist Assoc(B), 2000, 62(3) : 493-509. 被引量:1
  • 10Kitagawa G. Monte Carlo Filter and Non-Gaussian Nonlinear State Space Models[J]. J Comput Graph Statist, 1996, 5 (1):1-25. 被引量:1

二级参考文献1

共引文献59

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部