期刊文献+

针对搜索引擎的媒体倾向性研究 被引量:2

Research on Media Orientation for Search Engines
下载PDF
导出
摘要 针对某一类产品的文本倾向性分析成为了现在研究的热点.该文以搜索引擎的媒体报道为出发点,使用已有的情感词典集合,以及通过信息熵的方法从训练集合中提取特征词,采用贝叶斯分类方法对文本进行倾向性分析,将媒体新闻分为正面报道、负面报道和无倾向性3类,得到了比较理想的正确率. Text orientation analysis for a given kind of production becomes research hotspot now. This paper researches in media news on search engines, using sentiment dictionaries and feature words from training set through information gain method to analyze the orientation with Bayes classifier. The texts are classified as positive news,negative news and neutral news. The precision is perfect.
出处 《江西师范大学学报(自然科学版)》 CAS 北大核心 2008年第2期127-131,共5页 Journal of Jiangxi Normal University(Natural Science Edition)
基金 国家重点基础研究(973)(2004CB318108) 国家自然科学基金(60621062,60503064,60736044) “863”高科技(2006AA01Z141)资助项目
关键词 搜索引擎 倾向性分析 情感词典 信息熵 search engine orientation analysis sentiment dictionary information gain
  • 相关文献

参考文献10

  • 1中国互联网络发展状况统计报告.http://www.cnnic.net.cn.2007-03. 被引量:5
  • 2Pang B, Lee L, Vaithyanathan S. Thumbs up sentiment classification using machine learning techniques [ C ]. Morristown: Assocation for Computational Linguistics,2002: 79-86. 被引量:1
  • 3Pang B, Lee L. A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts[ C]. Morristown: Assocation for Computational Linguistics,2004. 被引量:1
  • 4Matsumoto S, Takamura H, Okumura M. Sentiment classification using word sub-sequences and dependency sub * trees[ C]. Berlin: Springer, 2005: 301-310. 被引量:1
  • 5Kennedy A, Inkpen D. Sentiment classification of movie and product reviews using contextual valence shifters[ C ]. Cambrige: Blackwell Publishers, 2005. 被引量:1
  • 6Esuli A, Sebastiani F. Determining the semantic orientation of terms through gloss classification[ C] .New York:ACM,2005:617-624. 被引量:1
  • 7Miller G, Beckwith R, Fellbaum C, et al. Introduction to WordNet: An on-line lexical database [ J ]. International Journal of Lexicography, 1990,3(4) :235-312. 被引量:1
  • 8Kim S, Hovy E. Determining the sentiment of opinions[ C ]. Morristown: Assocafion for Computational Linguistics, 2004. 被引量:1
  • 9董振东.情感分析用词语集[EB/OL].[2007.11.13].http://www.keenage.com/html/c-index.html. 被引量:1
  • 10Yang Y, Pedersen J. A comparative study on feature selection in text categorization[ C ]. San Francisco: Morgan Kaufman Publishers, 1997: 412-420. 被引量:1

共引文献4

同被引文献17

  • 1罗欣,夏德麟,晏蒲柳.基于词频差异的特征选取及改进的TF-IDF公式[J].计算机应用,2005,25(9):2031-2033. 被引量:55
  • 2刘辉林,郭来德,刘兰哲,王光兴.中文农业主题搜索引擎的设计与实现[J].郑州大学学报(理学版),2007,39(2):74-77. 被引量:10
  • 3马海兵,刘永丹,王兰成,李荣陆.三种文档语义倾向性识别方法的分析与比较[J].现代图书情报技术,2007(4):43-47. 被引量:15
  • 4李智超,熊风,富羽鹏,马少平.分布式大规模文本检索系统[J].广西师范大学学报(自然科学版),2007,25(2):178-181. 被引量:5
  • 5Bo Pang, Lillian Lee, Shivakumar Vaithyanathan. Thumbs up Sentiment Classification Using Machine Learning Techniques [ C ]. In Proceedings of EMNLP 2002 : 79 - 86. 被引量:1
  • 6Vapnik V. The Nature of Statistical Beaming Theory[ M ]. New York; Sprfinger- Verlag, 1995. 被引量:1
  • 7CHEN Yi-fan,XUE Gui-Rong,YU Yong. Advertising keyword suggestion based on concept hierarchy[C]//Proceedings of the International Conference on Web Search and Data Mining. New York :ACM Press,2008:251-260. 被引量:1
  • 8RAVI S,BRODER A,GABRILOVICH E,et al. Automatic generation of bid phrases for online advertising[C]//Proceedings of the Third ACM International Conference on Web Search and Data Mining. New York :ACM Press ,2010: 341-350. 被引量:1
  • 9BRODER A ,FONTOURA M ,JOSIFOVSKI V,et al. A semantic approach to contextual advertising[C]//ACM Special Interest Group on Information Retrieval. New York : ACM Press, 2007 : 559-566. 被引量:1
  • 10RADLINSKI F,BRODER A ,CICCOLO P,et al. Optimizing relevance and revenue in ad search:a query substitution approach[C]//Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York : ACM Press, 2008 : 403-410. 被引量:1

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部